Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2015_4_2_a6, author = {B.-Ya. Xi and F. Qi}, title = {Integral inequalities of {Hermite\,--\,Hadamard} type for $((\alpha,m), \log)$-convex functions on co--ordinates}, journal = {Problemy analiza}, pages = {73--92}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2015_4_2_a6/} }
TY - JOUR AU - B.-Ya. Xi AU - F. Qi TI - Integral inequalities of Hermite\,--\,Hadamard type for $((\alpha,m), \log)$-convex functions on co--ordinates JO - Problemy analiza PY - 2015 SP - 73 EP - 92 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2015_4_2_a6/ LA - en ID - PA_2015_4_2_a6 ER -
B.-Ya. Xi; F. Qi. Integral inequalities of Hermite\,--\,Hadamard type for $((\alpha,m), \log)$-convex functions on co--ordinates. Problemy analiza, Tome 4 (2015) no. 2, pp. 73-92. http://geodesic.mathdoc.fr/item/PA_2015_4_2_a6/
[1] Toader G., “Some generalizations of the convexity”, Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985, 329–338 | MR
[2] Dragomir S. S., Toader G., “Some inequalities for $m$-convex functions”, Studia Univ. Babeş-Bolyai Math., 38:1 (1993), 21–28 | MR | Zbl
[3] Miheşan V. G., “A generalization of the convexity”, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, 1993 (Romania)
[4] Bakula M. K., Özdemir M. E., Pečarić J., “Hadamard type inequalities for $m$-convex and $(\alpha, m)$-convex functions”, J. Inequal. Pure Appl. Math., 9:4 (2008), Art. 96, 12 pp. http://www.emis.de/journals/JIPAM/article1032.html | MR
[5] Dragomir S. S., “On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane”, Taiwanese J. Math., 5:4 (2001), 775–788 | MR | Zbl
[6] Dragomir S. S., Pearce C. E. M., Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000 http://www.staff.vu.edu.au/RGMIA/monographs/hermite_hadamard.html
[7] Chun L., “Some new inequalities of Hermite–Hadamard type for $(\alpha_1,m_1)$-$(\alpha_2,m_2)$-convex functions on coordinates”, J. Funct. Spaces, 2014 (2014), Article ID 975950, 7 pp. | DOI | MR
[8] Xi B.-Y., Bai S.-P., Qi F., Some new inequalities of Hermite–Hadamard type for $(\alpha,m_1)$-$(s_2,m_2)$-convex functions on co-ordinates | DOI
[9] Bai S.-P., Qi F., “Some inequalities for $(s_1,m_1)$-$(s_2,m_2)$-convex functions on the co-ordinates”, Glob. J. Math. Anal., 1:1 (2013), 22–28 | DOI
[10] Bai S.-P., Wang S.-H., Qi F., “Some new integral inequalities of Hermite–Hadamard type for $(\alpha, m; P)$-convex functions on co-ordinates”, J. Appl. Anal. Comput., 6:1 (2016), 171–178 | DOI
[11] Guo X.-Y., Qi F., Xi B.-Y., “Some new Hermite–Hadamard type inequalities for geometrically quasi-convex functions on co-ordinates”, J. Nonlinear Sci. Appl., 8:5 (2015), 740–749 | MR | Zbl
[12] Xi B.-Y., Hua J., Qi F., “Hermite–Hadamard type inequalities for extended $s$-convex functions on the co-ordinates in a rectangle”, J. Appl. Anal., 20:1 (2014), 29–39 | DOI | MR | Zbl