Integral inequalities of Hermite\,--\,Hadamard type for $((\alpha,m), \log)$-convex functions on co--ordinates
Problemy analiza, Tome 4 (2015) no. 2, pp. 73-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The convexity of functions is a basic concept in mathematics and it has been generalized in various directions. Establishing integral inequalities of Hermite – Hadamard type for various convex functions is one of main topics in the theory of convex functions and attracts a number of mathematicians for several centuries. Currently there have accumulated an amount of literature on integral inequalities of Hermite – Hadamard type for various convex functions. In the paper, the authors introduce a new concept "$((\alpha,m), \log)$–convex functions on the co–ordinates on the rectangle of the plane" and establish new integral inequalities of the Hermite – Hadamard type for $((\alpha,m),\log)$-convex functions on the co–ordinates on the rectangle of the plane.
Keywords: convex function, \log)$-convex function, co–ordinates, integral inequality of the Hermite – Hadamard type.
Mots-clés : $((\alpha,m)
@article{PA_2015_4_2_a6,
     author = {B.-Ya. Xi and F. Qi},
     title = {Integral inequalities of {Hermite\,--\,Hadamard} type for $((\alpha,m), \log)$-convex functions on co--ordinates},
     journal = {Problemy analiza},
     pages = {73--92},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2015_4_2_a6/}
}
TY  - JOUR
AU  - B.-Ya. Xi
AU  - F. Qi
TI  - Integral inequalities of Hermite\,--\,Hadamard type for $((\alpha,m), \log)$-convex functions on co--ordinates
JO  - Problemy analiza
PY  - 2015
SP  - 73
EP  - 92
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2015_4_2_a6/
LA  - en
ID  - PA_2015_4_2_a6
ER  - 
%0 Journal Article
%A B.-Ya. Xi
%A F. Qi
%T Integral inequalities of Hermite\,--\,Hadamard type for $((\alpha,m), \log)$-convex functions on co--ordinates
%J Problemy analiza
%D 2015
%P 73-92
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2015_4_2_a6/
%G en
%F PA_2015_4_2_a6
B.-Ya. Xi; F. Qi. Integral inequalities of Hermite\,--\,Hadamard type for $((\alpha,m), \log)$-convex functions on co--ordinates. Problemy analiza, Tome 4 (2015) no. 2, pp. 73-92. http://geodesic.mathdoc.fr/item/PA_2015_4_2_a6/

[1] Toader G., “Some generalizations of the convexity”, Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985, 329–338 | MR

[2] Dragomir S. S., Toader G., “Some inequalities for $m$-convex functions”, Studia Univ. Babeş-Bolyai Math., 38:1 (1993), 21–28 | MR | Zbl

[3] Miheşan V. G., “A generalization of the convexity”, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, 1993 (Romania)

[4] Bakula M. K., Özdemir M. E., Pečarić J., “Hadamard type inequalities for $m$-convex and $(\alpha, m)$-convex functions”, J. Inequal. Pure Appl. Math., 9:4 (2008), Art. 96, 12 pp. http://www.emis.de/journals/JIPAM/article1032.html | MR

[5] Dragomir S. S., “On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane”, Taiwanese J. Math., 5:4 (2001), 775–788 | MR | Zbl

[6] Dragomir S. S., Pearce C. E. M., Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000 http://www.staff.vu.edu.au/RGMIA/monographs/hermite_hadamard.html

[7] Chun L., “Some new inequalities of Hermite–Hadamard type for $(\alpha_1,m_1)$-$(\alpha_2,m_2)$-convex functions on coordinates”, J. Funct. Spaces, 2014 (2014), Article ID 975950, 7 pp. | DOI | MR

[8] Xi B.-Y., Bai S.-P., Qi F., Some new inequalities of Hermite–Hadamard type for $(\alpha,m_1)$-$(s_2,m_2)$-convex functions on co-ordinates | DOI

[9] Bai S.-P., Qi F., “Some inequalities for $(s_1,m_1)$-$(s_2,m_2)$-convex functions on the co-ordinates”, Glob. J. Math. Anal., 1:1 (2013), 22–28 | DOI

[10] Bai S.-P., Wang S.-H., Qi F., “Some new integral inequalities of Hermite–Hadamard type for $(\alpha, m; P)$-convex functions on co-ordinates”, J. Appl. Anal. Comput., 6:1 (2016), 171–178 | DOI

[11] Guo X.-Y., Qi F., Xi B.-Y., “Some new Hermite–Hadamard type inequalities for geometrically quasi-convex functions on co-ordinates”, J. Nonlinear Sci. Appl., 8:5 (2015), 740–749 | MR | Zbl

[12] Xi B.-Y., Hua J., Qi F., “Hermite–Hadamard type inequalities for extended $s$-convex functions on the co-ordinates in a rectangle”, J. Appl. Anal., 20:1 (2014), 29–39 | DOI | MR | Zbl