On the inequalities for the volume of the unit ball $\Omega_{n}$ in $\mathbb{R}^{n}$
Problemy analiza, Tome 4 (2015) no. 2, pp. 12-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inequalities about the volume of the unit ball $\Omega_n$ in $\mathbb{R}^n$ were studies by several authors, especially Horst Alzer has a great contribution to this topic. Thereafter many authors produced numerous papers on this topic. Motivated by the work of the several authors, we make a contribution to the topic by giving the new inequalities about the volume of the unit ball $\Omega_n$. Our inequalities refine the recent results existing in the literature.
Keywords: inequalities, gamma function, psi function, volume of the unit ball.
@article{PA_2015_4_2_a1,
     author = {B. A. Bhayo},
     title = {On the inequalities for the volume of the unit ball $\Omega_{n}$ in $\mathbb{R}^{n}$},
     journal = {Problemy analiza},
     pages = {12--22},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2015_4_2_a1/}
}
TY  - JOUR
AU  - B. A. Bhayo
TI  - On the inequalities for the volume of the unit ball $\Omega_{n}$ in $\mathbb{R}^{n}$
JO  - Problemy analiza
PY  - 2015
SP  - 12
EP  - 22
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2015_4_2_a1/
LA  - en
ID  - PA_2015_4_2_a1
ER  - 
%0 Journal Article
%A B. A. Bhayo
%T On the inequalities for the volume of the unit ball $\Omega_{n}$ in $\mathbb{R}^{n}$
%J Problemy analiza
%D 2015
%P 12-22
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2015_4_2_a1/
%G en
%F PA_2015_4_2_a1
B. A. Bhayo. On the inequalities for the volume of the unit ball $\Omega_{n}$ in $\mathbb{R}^{n}$. Problemy analiza, Tome 4 (2015) no. 2, pp. 12-22. http://geodesic.mathdoc.fr/item/PA_2015_4_2_a1/

[1] Böhm J., Hertel E., Polyedergeometrie in $n$-dimensionalen Rümen konstanter Krümmung, Birkhäuser, Basel, 1981 | MR

[2] Anderson G. D., Vamanamurthy M. K., Vuorinen M., “Special functions of quasiconformal theory”, Exposition. Math., 7 (1989), 97–136 | MR | Zbl

[3] Anderson G. D., Qiu S.-L., “A monotoneity property of the gamma function”, Proc. Amer. Soc., 125 (1997), 3355–3362 | DOI | MR | Zbl

[4] Klain D. A., Rota G.-C., “A continuous analogue of Sperner's theorem”, Comm. Pure Appl. Math., 50 (1997), 205–223 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] Alzer H., “Inequalities for the volume of the unit ball in $\mathbb{R}^n$”, J. Math. Anal. Appl., 252 (2000), 353–363 | DOI | MR | Zbl

[6] Mortici C., “Monotonicity properties of the volume of the unit ball in $\mathbb{R}^n$”, Optim. Lett., 4 (2010), 457–464 | DOI | MR | Zbl

[7] Yin L., “Several inequalities for the volume of the unit ball in $\mathbb{R}^n$”, Bull. Malays. Math. Sci. Soc., 37:4 (2014), 1177–1183 | MR | Zbl

[8] Abramowitz M., Stegun I. (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards, Dover–New York, 1965

[9] Anderson G. D., Barnard R. W., Richards K. C., Vamanamurthy M. K., Vuorinen M., “Inequalities for zero-balanced hypergeometric functions”, Trans. Amer. Math. Soc., 347 (1995), 1713–1723 | DOI | MR | Zbl

[10] Anderson G. D., Qiu S.-L., Vamanamurthy M. K., Vuorinen M., “Generalized elliptic integrals and modular equation”, Pacific J. Math., 192:1 (2000), 1–37 | DOI | MR | Zbl

[11] Anderson G. D., Vamanamurthy M. K., Vuorinen M., Conformal invariants, inequalities and quasiconformal maps, J. Wiley, 1997, 505 pp. | MR | Zbl

[12] Alzer H., “On some inequalities for the gamma and psi functions”, Math. Comput., 66 (1997), 373–389 | DOI | MR | Zbl

[13] Alzer H., “Sharp inequalities for the digamma and polygamma functions”, Forum Math., 16 (2004), 181–221 | DOI | MR | Zbl

[14] Bhayo B. A., Sándor J., “Inequalities connecting generalized trigonometric functions with their inverses”, Probl. Anal. Issues Anal., 2(20):2 (2013), 82–90 | DOI | MR | Zbl

[15] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010 | MR | Zbl

[16] Alzer H., “Sharp upper and lower bounds for the gamma function”, Proc. Royal Soc. Edinburg, 139:04 (2009), 709–718 | DOI | MR | Zbl

[17] Alzer H., “Inequalities for the volume of the unit ball in $\mathbb{R}^n$, II”, Mediterr. J. Math., 5 (2008), 395–413 | DOI | MR | Zbl

[18] Ruskeepää H., Mathematica$^\circledR$ Navigator, 3rd ed., Academic Press, 2009 | Zbl

[19] Klén R., Visuri M., Vuorinen M., “On Jordan type inequalities for hyperbolic functions”, J. Ineq. Appl., 2010, 14 pp. | DOI

[20] Zhu L., “New inequalities of Shafer-Fink Type for arc hyperbolic sine”, J. Inequal. Appl., 2008, Art. ID 368275, 5 pp. | DOI | MR