Mots-clés : pseudoconvex domains, Bloch spaces.
@article{PA_2015_4_1_a5,
author = {R. F. Shamoyan and S. M. Kurilenko},
title = {On traces of analytic {Herz} and {Bloch} type spaces in bounded strongly pseudoconvex domains in $\mathbb{C}^{n}$},
journal = {Problemy analiza},
pages = {73--94},
year = {2015},
volume = {4},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PA_2015_4_1_a5/}
}
TY - JOUR
AU - R. F. Shamoyan
AU - S. M. Kurilenko
TI - On traces of analytic Herz and Bloch type spaces in bounded strongly pseudoconvex domains in $\mathbb{C}^{n}$
JO - Problemy analiza
PY - 2015
SP - 73
EP - 94
VL - 4
IS - 1
UR - http://geodesic.mathdoc.fr/item/PA_2015_4_1_a5/
LA - en
ID - PA_2015_4_1_a5
ER -
R. F. Shamoyan; S. M. Kurilenko. On traces of analytic Herz and Bloch type spaces in bounded strongly pseudoconvex domains in $\mathbb{C}^{n}$. Problemy analiza, Tome 4 (2015) no. 1, pp. 73-94. http://geodesic.mathdoc.fr/item/PA_2015_4_1_a5/
[1] Ortega J., Fabrega J., “Mixed-norm spaces and interpolation”, Studia Math., 109:3 (1994), 234–254 | MR
[2] Shamoyan R., Mihic O., “On traces of holomorphic functions on the unit polyball”, Appl. Anal. Discrete Math., 2009, no. 3, 198–211 | DOI | MR | Zbl
[3] Shamoyan F., Djrbashian A., Topics in the theory of $A^p_\alpha$ spaces, Teubner Texte, Leipzig, 1988 | MR
[4] Shamoyan R., Mihic O., “On traces of $Q_p$ type spaces and mixed norm analytic function spaces on polyballs”, Siauliau. Math. Seminar, 5:13 (2010), 101–121 | DOI | MR
[5] Amar E., Menini C., A counterexample to the corona theorem for the operators in $H^2$ in polydisk, 206 (2002), 257–268 | MR | Zbl
[6] Abate M., Saracco A., “Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains”, J. London Math. Soc., 83 (2011), 587–605 | DOI | MR | Zbl
[7] Abate M., Raissy J., Saracco A., “Toeplitz operators and Carleson measures in strongly pseudoconvex domains”, Journal of Functional Analysis, 263:11 (2012), 3449–3491 | DOI | MR | Zbl
[8] Shamoyan R., Mihic O., “In search of traces of some holomorphic functions in polyballs”, Revista Notas de Matem., 4 (2008), 1–23 | MR
[9] Shamoyan R., Mihic O., “A note on traces of some holomorphic function spaces in the polyballs”, Journal of Function Spaces and applications, 8:3 (2010), 271–285 | DOI | MR | Zbl
[10] Mihic O., Shamoyan R., “Sharp trace theorems in pseudoconvex domains”, Doklady NAN Armenii, 114:2 (2014), 91–96 | MR
[11] Shamoyan R., Mihic O., “On traces of Bergman-type spaces in bounded strongly pseudoconvex domains with smooth boundary”, Journal of Function spaces, 2015 (to appear) | MR
[12] Shamoyan R., Povpritz E., “Trace theorems in unbounded Siegel domains”, Uzbek Math. Journal, 1 (2015), 149–158
[13] Shamoyan R., Povpritz E., “On traces of Bergman type spaces in tubular domains over symmetric cones”, Journal of Siberian Federal University, 4 (2013), 527–538
[14] Shamoyan R., Kurilenko S., “On extremal problems in tubular domains over symmetric cones”, Probl. Anal. Issues Anal., 3(21):1 (2014), 44–65 | DOI | MR | Zbl
[15] Beatrous F., “$L^p$ estimates for extensions of analytic functions”, Michigan Math. Journal, 32 (1985), 134–161 | MR
[16] Range R., Holomorphic functions and integral representations in several complex variables, Springer-Verlag, Berlin, 1986 | MR | Zbl
[17] Englis M., Hanninen T., Taskinen T., “Minimal $L^\infty$ type on strictly pseudoconvex domains on which Bergman projection continious”, Houston Math. Journal, 32 (2006), 253–275 | MR | Zbl
[18] Shamoyan R., Arsenovic M., “On distance estimates and atomic decompositions in spaces of analytic functions on strictly pseudoconvex domains”, Bulletin of the Korean Mathematical Society, 52:1 (2015), 85–103 | DOI | MR | Zbl
[19] Shamoyan R., Kurilenko S., “On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of $n$-dimensional Complex spaces”, Journal of Siberian Federal University. Mathematics and Physics, 7:3 (2014), 383–388
[20] Shamoyan R., Kurilenko S., “On a sharp estimate for a distance function in Bergman type analytic spaces in Siegel domains of second type”, Mathematica Montisnigri, XXX (2014), 5–16 | MR
[21] Yamaji S., “On positive Toeplitz operators on the Bergman spaces in minimal bounded homogeneous domians”, Hokkaido Math. J., 41:2 (2012), 257–274 | DOI | MR | Zbl
[22] Henkin G. M., “Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications”, Math. USSR Sb., 7 (1969), 597–616 | DOI