On traces of analytic Herz and Bloch type spaces in bounded strongly pseudoconvex domains in $\mathbb{C}^{n}$
Problemy analiza, Tome 4 (2015) no. 1, pp. 73-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In our paper we provide some direct extentions of our recent sharp results on traces in the analytic function spaces, which we proved earlier in case of the unit ball in $\mathbb{C}^n$, to the case of the bounded strongly pseudoconvex domains with a smooth boundary. To be more precise we consider the analytic Bloch space in the strongly pseudoconvex domains with a smooth boundary, mixed norm spaces and so-called the new Herz type spaces of analytic functions in the domains of the same type. The Bloch spaces, for various complicated domains, were studied by many authors, but the various Herz type spaces are introduced in this paper, as far as we know, for the first time. The role of so-called r-lattices and their new properties are essential for our proofs. These techniques based on the lattices in the strongly pseudoconvex domains were invented and heavily used in the recent papers of Abate and coauthors. The arguments in the proofs in the case of the unit ball and the strongly pseudoconvex domains have some similarity.
Keywords: analytic functions, mixed-norm spaces, Herz-type spaces
Mots-clés : pseudoconvex domains, Bloch spaces.
@article{PA_2015_4_1_a5,
     author = {R. F. Shamoyan and S. M. Kurilenko},
     title = {On traces of analytic {Herz} and {Bloch} type spaces in  bounded strongly pseudoconvex  domains in $\mathbb{C}^{n}$},
     journal = {Problemy analiza},
     pages = {73--94},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2015_4_1_a5/}
}
TY  - JOUR
AU  - R. F. Shamoyan
AU  - S. M. Kurilenko
TI  - On traces of analytic Herz and Bloch type spaces in  bounded strongly pseudoconvex  domains in $\mathbb{C}^{n}$
JO  - Problemy analiza
PY  - 2015
SP  - 73
EP  - 94
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2015_4_1_a5/
LA  - en
ID  - PA_2015_4_1_a5
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%A S. M. Kurilenko
%T On traces of analytic Herz and Bloch type spaces in  bounded strongly pseudoconvex  domains in $\mathbb{C}^{n}$
%J Problemy analiza
%D 2015
%P 73-94
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2015_4_1_a5/
%G en
%F PA_2015_4_1_a5
R. F. Shamoyan; S. M. Kurilenko. On traces of analytic Herz and Bloch type spaces in  bounded strongly pseudoconvex  domains in $\mathbb{C}^{n}$. Problemy analiza, Tome 4 (2015) no. 1, pp. 73-94. http://geodesic.mathdoc.fr/item/PA_2015_4_1_a5/

[1] Ortega J., Fabrega J., “Mixed-norm spaces and interpolation”, Studia Math., 109:3 (1994), 234–254 | MR

[2] Shamoyan R., Mihic O., “On traces of holomorphic functions on the unit polyball”, Appl. Anal. Discrete Math., 2009, no. 3, 198–211 | DOI | MR | Zbl

[3] Shamoyan F., Djrbashian A., Topics in the theory of $A^p_\alpha$ spaces, Teubner Texte, Leipzig, 1988 | MR

[4] Shamoyan R., Mihic O., “On traces of $Q_p$ type spaces and mixed norm analytic function spaces on polyballs”, Siauliau. Math. Seminar, 5:13 (2010), 101–121 | DOI | MR

[5] Amar E., Menini C., A counterexample to the corona theorem for the operators in $H^2$ in polydisk, 206 (2002), 257–268 | MR | Zbl

[6] Abate M., Saracco A., “Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains”, J. London Math. Soc., 83 (2011), 587–605 | DOI | MR | Zbl

[7] Abate M., Raissy J., Saracco A., “Toeplitz operators and Carleson measures in strongly pseudoconvex domains”, Journal of Functional Analysis, 263:11 (2012), 3449–3491 | DOI | MR | Zbl

[8] Shamoyan R., Mihic O., “In search of traces of some holomorphic functions in polyballs”, Revista Notas de Matem., 4 (2008), 1–23 | MR

[9] Shamoyan R., Mihic O., “A note on traces of some holomorphic function spaces in the polyballs”, Journal of Function Spaces and applications, 8:3 (2010), 271–285 | DOI | MR | Zbl

[10] Mihic O., Shamoyan R., “Sharp trace theorems in pseudoconvex domains”, Doklady NAN Armenii, 114:2 (2014), 91–96 | MR

[11] Shamoyan R., Mihic O., “On traces of Bergman-type spaces in bounded strongly pseudoconvex domains with smooth boundary”, Journal of Function spaces, 2015 (to appear) | MR

[12] Shamoyan R., Povpritz E., “Trace theorems in unbounded Siegel domains”, Uzbek Math. Journal, 1 (2015), 149–158

[13] Shamoyan R., Povpritz E., “On traces of Bergman type spaces in tubular domains over symmetric cones”, Journal of Siberian Federal University, 4 (2013), 527–538

[14] Shamoyan R., Kurilenko S., “On extremal problems in tubular domains over symmetric cones”, Probl. Anal. Issues Anal., 3(21):1 (2014), 44–65 | DOI | MR | Zbl

[15] Beatrous F., “$L^p$ estimates for extensions of analytic functions”, Michigan Math. Journal, 32 (1985), 134–161 | MR

[16] Range R., Holomorphic functions and integral representations in several complex variables, Springer-Verlag, Berlin, 1986 | MR | Zbl

[17] Englis M., Hanninen T., Taskinen T., “Minimal $L^\infty$ type on strictly pseudoconvex domains on which Bergman projection continious”, Houston Math. Journal, 32 (2006), 253–275 | MR | Zbl

[18] Shamoyan R., Arsenovic M., “On distance estimates and atomic decompositions in spaces of analytic functions on strictly pseudoconvex domains”, Bulletin of the Korean Mathematical Society, 52:1 (2015), 85–103 | DOI | MR | Zbl

[19] Shamoyan R., Kurilenko S., “On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of $n$-dimensional Complex spaces”, Journal of Siberian Federal University. Mathematics and Physics, 7:3 (2014), 383–388

[20] Shamoyan R., Kurilenko S., “On a sharp estimate for a distance function in Bergman type analytic spaces in Siegel domains of second type”, Mathematica Montisnigri, XXX (2014), 5–16 | MR

[21] Yamaji S., “On positive Toeplitz operators on the Bergman spaces in minimal bounded homogeneous domians”, Hokkaido Math. J., 41:2 (2012), 257–274 | DOI | MR | Zbl

[22] Henkin G. M., “Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications”, Math. USSR Sb., 7 (1969), 597–616 | DOI