Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2015_4_1_a1, author = {S. S. Dragomir}, title = {Inequalities for the {Riemann--Stieltjes} integral of $S$-dominated integrators with {applications.~I}}, journal = {Problemy analiza}, pages = {11--37}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2015_4_1_a1/} }
S. S. Dragomir. Inequalities for the Riemann--Stieltjes integral of $S$-dominated integrators with applications.~I. Problemy analiza, Tome 4 (2015) no. 1, pp. 11-37. http://geodesic.mathdoc.fr/item/PA_2015_4_1_a1/
[1] Dragomir S. S., “The Ostrowski inequality for mappings of bounded variation”, Bull. Austral. Math. Soc., 60 (1999), 495–826 | DOI | MR
[2] Cerone P., Dragomir S. S., Pearce C. E. M., “A generalised trapezoid inequality for functions of bounded variation”, Turk. J. Math., 24 (2000), 147–163 | MR | Zbl
[3] Barnett N. S., Cheung W. S., Dragomir S. S., Sofo A., “Ostrowski and trapezoid type inequalities for the Stieltjes integral with Lipschitzian integrands or integrators”, Comput. Math. Appl., 57 (2009), 195–201 | DOI | MR | Zbl
[4] Barnett N. S., Dragomir S. S., “A perturbed trapezoid inequality in terms of the fourth derivative”, Korean J. Comput. Appl. Math., 9 (2002), 45–60 | MR | Zbl
[5] Barnett N. S., Dragomir S. S., “Perturbed version of a general trapezoid inequality”, Inequality theory and applications, 3 (2003), 1–12 | MR | Zbl
[6] Barnett N. S., Dragomir S. S., “A perturbed trapezoid inequality in terms of the third derivative and applications”, Inequality theory and applications, 5 (2007), 1–11 | MR | Zbl
[7] Barnett N. S., Dragomir S. S., Gomm I., “A companion for the Ostrowski and the generalised trapezoid inequalities”, Math. Comput. Modelling, 50 (2009), 179–187 | DOI | MR | Zbl
[8] Cerone P., Dragomir S. S., “Midpoint-type rules from an inequalities point of view”, Handbook of analytic-computational methods in applied mathematics, 2000, 135–200 | MR | Zbl
[9] Cerone P., Dragomir S. S., “Trapezoidal-type rules from an inequalities point of view”, Handbook of analytic-computational methods in applied mathematics, 2000, 65–134 | MR | Zbl
[10] Cheng X. L., Sun J., “A note on the perturbed trapezoid inequality”, J. Inequal. Pure Appl. Math., 3 (2002), 29, 7 pp. | MR
[11] Dragomir S. S., “On the trapezoid quadrature formula and applications”, Kragujevac J. Math., 23 (2001), 25–36 | MR | Zbl
[12] Dragomir S. S., “Some inequalities of midpoint and trapezoid type for the Riemann–Stieltjes integral”, Nonlinear Anal., 47 (2001), 2333–2340 | DOI | MR | Zbl
[13] Dragomir S. S., “Improvements of Ostrowski and generalised trapezoid inequality in terms of the upper and lower bounds of the first derivative”, Tamkang J. Math., 34 (2003), 213–222 | MR | Zbl
[14] Dragomir S. S., “Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation”, Arch. Math., 91 (2008), 450–460 | DOI | MR | Zbl
[15] Dragomir S. S., Cho Y. J., Kim Y. H., “On the trapezoid inequality for the Riemann–Stieltjes integral with Hölder continuous integrands and bounded variation integrators”, Inequality theory and applications, 5 (2007), 71–79 | MR | Zbl
[16] Dragomir S. S., Mcandrew A., “On trapezoid inequality via a Grüss type result and applications”, Tamkang J. Math., 31 (2000), 193–201 | MR | Zbl
[17] Dragomir S. S., Pečarić J., Wang S., “The unified treatment of trapezoid, Simpson, and Ostrowski type inequality for monotonic mappings and applications”, Math. Comput. Modelling, 31 (2000), 61–70 | DOI | MR | Zbl
[18] Gunawan H., “A note on Dragomir–McAndrew's trapezoid inequalities”, Tamkang J. Math., 33 (2002), 241–244 | MR | Zbl
[19] Liu Z., “Some inequalities of perturbed trapezoid type”, J. Inequal. Pure Appl. Math., 7 (2006), 47, 9 pp. | MR | Zbl
[20] Liu W. J., Xue Q. L., Dong J. W., “New generalization of perturbed trapezoid, mid-point inequalities and applications”, Int. J. Pure Appl. Math., 41 (2007), 761–768 | MR | Zbl
[21] Kechriniotis A. I., Assimakis N. D., “Generalizations of the trapezoid inequalities based on a new mean value theorem for the remainder in Taylor's formula”, J. Inequal. Pure Appl. Math., 7 (2006), 90, 13 pp. | MR | Zbl
[22] Mercer P. R., “Hadamard's inequality and trapezoid rules for the Riemann–Stieltjes integral”, J. Math. Anal. Appl., 344 (2008), 921–926 | DOI | MR | Zbl
[23] Mercer A. McD., “On perturbed trapezoid inequalities”, J. Inequal. Pure Appl. Math., 7 (2006), 118, 7 pp. | MR | Zbl
[24] Pachpatte B. G., “A note on a trapezoid type integral inequality”, Bull. Greek Math. Soc., 49 (2004), 85–90 | MR | Zbl
[25] Ujević N., “Perturbed trapezoid and mid-point inequalities and applications”, Soochow J. Math., 29 (2003), 249–257 | MR | Zbl
[26] Ujević N., “On perturbed mid-point and trapezoid inequalities and applications”, Kyungpook Math. J., 43 (2003), 327–334 | MR | Zbl
[27] Ujević N., “Error inequalities for a generalized trapezoid rule”, Appl. Math. Lett., 19 (2006), 32–37 | DOI | MR | Zbl
[28] Dragomir S. S., “On the Ostrowski's integral inequality for mappings with bounded variation and applications”, Math. Ineq. Appl., 4 (2001), 33–40 ; Preprint, RGMIA Res. Rep. Coll., 2:1 (1999), 7 | MR
[29] Acu A. M., Baboş A., Sofonea F., “The mean value theorems and inequalities of Ostrowski type”, Sci. Stud. Res. Ser. Math. Inform., 21 (2001), 5–16 | MR
[30] Acu A. M., Sofonea F., “On an inequality of Ostrowski type”, J. Sci. Arts., 16:3 (2011), 281–287 | MR
[31] Ahmad F., Barnett N. S., Dragomir S. S., “New weighted Ostrowski and Čebyšev type inequalities”, Nonlinear Anal., 71 (2009), e1408–e1412 | DOI | Zbl
[32] Alomari M. W., “A companion of Ostrowski's inequality with applications”, Transylv. J. Math. Mech., 3 (2011), 9–14 | MR | Zbl
[33] Alomari M. W., Darus M., Dragomir S. S., Cerone P., “Ostrowski type inequalities for functions whose derivatives are $s$-convex in the second sense”, Appl. Math. Lett., 23 (2010), 1071–1076 | DOI | MR | Zbl
[34] Anastassiou G. A., “Ostrowski type inequalities”, Proc. Amer. Math. Soc., 123 (1995), 3775–3781 | DOI | MR | Zbl
[35] Anastassiou G. A., “Univariate Ostrowski inequalities, revisited”, Monatsh. Math., 135 (2002), 175–189 | DOI | MR | Zbl
[36] Anastassiou G. A., “Ostrowski inequalities for cosine and sine operator functions”, Mat. Vestnik, 64 (2012), 336–346 | MR | Zbl
[37] Anastassiou G. A., “Multivariate right fractional Ostrowski inequalities”, J. Appl. Math. Inform., 30 (2012), 445–454 | MR | Zbl
[38] Anastassiou G. A., “Univariate right fractional Ostrowski inequalities”, Cubo, 14 (2012), 1–7 | DOI | MR | Zbl
[39] Cerone P., Cheung W. S., Dragomir S. S., “On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation”, Comput. Math. Appl., 54 (2007), 183–191 | DOI | MR | Zbl
[40] Dragomir S. S., “On the mid-point quadrature formula for mappings with bounded variation and applications”, Kragujevac J. Math., 22 (2000), 13–19 | MR | Zbl
[41] Dragomir S. S., “Some inequalities for continuous functions of selfadjoint operators in Hilbert spaces”, Acta Math. Vietnamica, 39 (2014), 287–303 | DOI | MR | Zbl
[42] Liu Z., “Some Ostrowski type inequalities and applications”, Vietnam J. Math., 37 (2009), 15–22 | MR | Zbl
[43] Liu Z., “Some companions of an Ostrowski type inequality and applications”, J. Inequal. Pure Appl. Math., 10 (2009), 52, 12 pp. | MR
[44] Liu Z., “A note on Ostrowski type inequalities related to some $s$-convex functions in the second sense”, Bull. Korean Math. Soc., 49 (2012), 775–785 | DOI | MR | Zbl
[45] Liu Z., “A sharp general Ostrowski type inequality”, Bull. Aust. Math. Soc., 83 (2011), 189–209 | DOI | MR | Zbl
[46] Masjed-Jamei M., Dragomir S. S., “A new generalization of the Ostrowski inequality and applications”, Filomat, 25 (2011), 115–123 | DOI | MR | Zbl
[47] Pachpatte B. G., “New inequalities of Ostrowski and trapezoid type for $n$-time differentiable functions”, Bull. Korean Math. Soc., 41 (2004), 633–639 | DOI | MR | Zbl
[48] Park J., “On the Ostrowskilike type integral inequalities for mappings whose second derivatives are s$^*$-convex”, Far East J. Math. Sci., 67 (2012), 21–35 | MR | Zbl
[49] Park J., “Some Ostrowskilike type inequalities for differentiable real $(\alpha, m)$-convex mappings”, Far East J. Math. Sci., 61 (2012), 75–91 | MR | Zbl
[50] Sarikaya Z., “On the Ostrowski type integral inequality”, Acta Math. Univ. Comenian. (N. S.), 79 (2010), 129–134 | MR | Zbl
[51] Sulaiman W. T., “Some new Ostrowski type inequalities”, J. Appl. Funct. Anal., 7 (2012), 102–107 | MR | Zbl
[52] Tseng K. L., “Improvements of the Ostrowski integral inequality for mappings of bounded variation, II”, Appl. Math. Comput., 218 (2012), 5841–5847 | DOI | MR | Zbl
[53] Tseng K. L., Hwang S. R., Yang G. S., Chou Y. M., “Improvements of the Ostrowski integral inequality for mappings of bounded variation, I”, Appl. Math. Comput., 217 (2010), 2348–2355 | DOI | MR | Zbl
[54] Vong S. W., “A note on some Ostrowskilike type inequalities”, Comput. Math. Appl., 62 (2011), 532–535 | DOI | MR | Zbl
[55] Wu Q., Yang S., “A note to Ujević's generalization of Ostrowski's inequality”, Appl. Math. Lett., 18 (2005), 657–665 | DOI | MR | Zbl
[56] Wu Y., Wang Y., “On the optimal constants of Ostrowskilike inequalities involving $n$ knots”, Appl. Math. Comput., 219 (2013), 7789–7794 | DOI | MR | Zbl
[57] Xiao Y. X., “Remarks on Ostrowskilike inequalities”, Appl. Math. Comput., 219 (2012), 1158–1162 | DOI | MR | Zbl
[58] Helmberg G., Introduction to spectral theory in Hilbert space, John Wiley Sons, Inc., New York, 1969 | MR