Growth theorems on classes of normalized locally quasiconformal mappings
Problemy analiza, Tome 2 (2013) no. 2, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic sharp growth theorems are proved in the classes of normalized locally quasiconformal automorphisms of the unit disk with the given majorant of the Laurentev's characteristic. The main results are obtained by the means of the methods of extremal lengths, symmetrization and some new method of estimation of distortion of modules of double connected domains under the locally quasiconformal mappings.
Keywords: locally quasiconformal mapping; moduli of families of curves; growth theorems.
@article{PA_2013_2_2_a0,
     author = {S. Yu. Graf},
     title = {Growth theorems on classes of normalized locally quasiconformal mappings},
     journal = {Problemy analiza},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2013_2_2_a0/}
}
TY  - JOUR
AU  - S. Yu. Graf
TI  - Growth theorems on classes of normalized locally quasiconformal mappings
JO  - Problemy analiza
PY  - 2013
SP  - 3
EP  - 20
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2013_2_2_a0/
LA  - ru
ID  - PA_2013_2_2_a0
ER  - 
%0 Journal Article
%A S. Yu. Graf
%T Growth theorems on classes of normalized locally quasiconformal mappings
%J Problemy analiza
%D 2013
%P 3-20
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2013_2_2_a0/
%G ru
%F PA_2013_2_2_a0
S. Yu. Graf. Growth theorems on classes of normalized locally quasiconformal mappings. Problemy analiza, Tome 2 (2013) no. 2, pp. 3-20. http://geodesic.mathdoc.fr/item/PA_2013_2_2_a0/

[1] Mori A., “On an absolute constant in the theory of quasi-conformal mappings”, J. Math. Soc. Japan, 1956, no. 8, 156–166 | DOI | MR | Zbl

[2] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, M., 1969 | MR

[3] Vasil'ev A., Moduli of families of curves for conformal and quasiconformal mappings, Berlin, N.Y., 2002 | MR

[4] Dzhenkins Dzh., Odnolistnye funktsii i konformnye otobrazheniya, M., 1962

[5] Graf S. Yu., Eilangoli O. R., “Ob iskazhenii modulei dvusvyaznykh oblastei pri lokalno-kvazikonformnykh otobrazheniyakh”, Primenenie funktsionalnogo analiza v teorii priblizhenii, 2009, 34–43, Tver

[6] Belinskii P. P., Obschie svoistva kvazikonformnykh otobrazhenii, Novosibirsk, 1974 | MR

[7] Starkov V. V., “Garmonicheskie lokalno-kvazikonformnye otobrazheniya”, Tr. PetrGU. Ser. Matematika, 1993, no. 1, 61–69 | MR | Zbl

[8] Graf S. Yu., Eilangoli O. R., “Differentsialnye neravenstva v lineino- i affinno-invariantnykh semeistvakh garmonicheskikh otobrazhenii”, Izvestiya VUZov. Matematika, 2010, no. 10, 69–72, Kazan | MR | Zbl

[9] Anderson G. D., Vamanamurthy M. K., Vuorinen M., Conformal invariants, inequalities an quasiconformal maps, New York, 1997

[10] Graf S. Yu., “Analog teoremy Mori dlya lokalno-kvazikonformnykh avtomorfizmov edinichnogo kruga”, Primenenie funktsionalnogo analiza v teorii priblizhenii, 2013, 34–47, Tver

[11] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk., 49:1(295) (1994), 3–76 | MR | Zbl

[12] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, M., 1973