On some extremal problems in certain harmonic function spaces of several variables related to mixed norm spaces
Problemy analiza, Tome 2 (2013) no. 1, pp. 43-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we provide some (not new) estimates on distances from our two previous papers together with some new estimates. Namely some estimates on distances in spaces of harmonic functions in the unit ball and the upper half space are provided. New estimates concerning mixed norm spaces and general weighted Bergman spaces are obtained and discussed.
Keywords: distance estimates; harmonic function; unit ball; Bergman spaces.
@article{PA_2013_2_1_a3,
     author = {R. F. Shamoyan},
     title = {On some extremal problems in certain harmonic function spaces of several variables related to mixed norm spaces},
     journal = {Problemy analiza},
     pages = {43--58},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2013_2_1_a3/}
}
TY  - JOUR
AU  - R. F. Shamoyan
TI  - On some extremal problems in certain harmonic function spaces of several variables related to mixed norm spaces
JO  - Problemy analiza
PY  - 2013
SP  - 43
EP  - 58
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2013_2_1_a3/
LA  - en
ID  - PA_2013_2_1_a3
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%T On some extremal problems in certain harmonic function spaces of several variables related to mixed norm spaces
%J Problemy analiza
%D 2013
%P 43-58
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2013_2_1_a3/
%G en
%F PA_2013_2_1_a3
R. F. Shamoyan. On some extremal problems in certain harmonic function spaces of several variables related to mixed norm spaces. Problemy analiza, Tome 2 (2013) no. 1, pp. 43-58. http://geodesic.mathdoc.fr/item/PA_2013_2_1_a3/

[1] Arsenović M., Shamoyan R. F., “On some extremal problems in spaces of harmonic functions”, Romai Journal, 7:1 (2011), 13–34 | MR

[2] Arsenović M., Shamoyan R. F., “Embeddings, traces and multipliers in harmonic function spaces”, Kragujevac Journal of Mathematics, 37:1 (2013), 45–64, arXiv: 1108.5343[math.FA] | MR | Zbl

[3] Arsenović M., Shamoyan R. F., Sharp theorems on multipliers and distances in harmonic function spaces, arXiv: 1106.5481[math.CV]

[4] Jevtić M., Pavlović M., “Harmonic Bergman functions on the unit ball in $\mathbb{R}^n$”, Acta Math. Hungar., 85:1–2 (1999), 81–96 | DOI | MR | Zbl

[5] Djrbashian M., Shamoian F., Topics in the theory of $A_{\alpha}^p$ classes, Teubner Texte zur Mathematik, 105, 1988 | MR

[6] Shamoyan R. F., Mihić O., “On new estimates for distances in analytic function spaces in the unit disc, polydisc and unit ball”, Bol. de la Asoc. Matematica Venezolana, 42:2 (2010), 89–103 | MR

[7] Shamoyan R. F., Mihić O., “On new estimates for distances in analytic function spaces in higher dimension”, Siberian Electronic Mathematical Reports, 6 (2009), 514–517 | MR | Zbl

[8] Stein E. M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, 1971 | MR

[9] Avetisyan K. L., “Weighted spaces of harmonic and analytic functions”, Armenian Journal of Mathematics, 2:4 (2009) ; Weighted spaces of harmonic and analytic functions, PhD Thesis, Erevan State University, Erevan | MR

[10] Zakaryan M., Weighted spaces of harmonic functions in unit ball and upperhalfspaces, PhD Thesis, Erevan State University, Erevan, 1996

[11] Shamoyan R. F., “On characterizations of main parts of some meromorphic classes of area Nevanlinna”, Tr. Petrozavodsk. Gos. Univ. Ser. Mathematics., 18 (2011), 172–254

[12] Shamoyan R. F., Haiying L., “On decriptions of closed ideals of analytic area Nevanlinna type classes in a circular ring on a complex plane $\mathbb{C}$”, Issues of Analysis, 1 (19):1 (2012), 24–31 | MR | Zbl

[13] Zhao R., “Distance from Bloch functions to some Mobius invariant spaces”, Ann. Acad. Sci. Fenn., 33 (2008), 303–313 | MR | Zbl