Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2012_1_1_a2, author = {R. F. Shamoyan}, title = {On decriptions of closed ideals of analytic area {Nevanlinna} type classes in a circular ring on a complex plane $\mathbb{C}$}, journal = {Problemy analiza}, pages = {24--31}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2012_1_1_a2/} }
TY - JOUR AU - R. F. Shamoyan TI - On decriptions of closed ideals of analytic area Nevanlinna type classes in a circular ring on a complex plane $\mathbb{C}$ JO - Problemy analiza PY - 2012 SP - 24 EP - 31 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2012_1_1_a2/ LA - en ID - PA_2012_1_1_a2 ER -
R. F. Shamoyan. On decriptions of closed ideals of analytic area Nevanlinna type classes in a circular ring on a complex plane $\mathbb{C}$. Problemy analiza, Tome 1 (2012) no. 1, pp. 24-31. http://geodesic.mathdoc.fr/item/PA_2012_1_1_a2/
[1] Djrbashyan M., Shamoyan F., Topics in the theory of $A_{\alpha}^p$ spaces, Teubner-Texte zur Mathematik, 105, Leipzig, 1988 | Zbl
[2] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman spaces, Graduate Texts in Mathematics, 199, Springer-Verlag, New York, 2000 | DOI | MR | Zbl
[3] Shamoyan R., Li H., “Descriptions of zero sets and parametric representations of certain new analytic area Nevanlinna type spaces in the unit disk”, Kragujevac Journal of Mathematics, 34 (2010), 73–89 | MR | Zbl
[4] Korenblum B., “Closed ideals in the ring $A^n$”, Funkcion. Anal. i prilogeni., 1972, no. 3, 38–52 (In Russian) | MR
[5] Shamoyan R., Li H., “Characterizations of closed ideals and main parts of some analytic and meromorphic classes ofarea Nevanlinna type in the unit disk”, International Journal of Mathematics and Statistics, 10 (2011), 109–121 | MR
[6] Rudin W., “Closed ideals in an algebra of analytic functions”, Canadian Journal of Mathematics, 9 (1957), 426–434 | DOI | MR | Zbl
[7] Estrele J., Stouse E., Zouakia F., “Closed ideals of $A^+$ and Cantor sets”, Journal Reigne Angew. Math., 449 (1994), 65–79 | MR
[8] Kursina I., Factorization and parametric representation of weighted spaces of analytic functions in the unit disk, Dissertation, Bryansk State University, Bryansk, 2000 (In Russian)
[9] Krasichkov I., “On closed ideals in locally convex algebra ofentire functions”, Siberian Mathematical Journal, 9(1) (1968), 77–98 (In Russian) | DOI
[10] Shirokov N., “Closed ideals of algebras of type $B_{p,q}^{\alpha}$”, Izv. Acad. Nauk SSSR., 46:6 (1982), 1316–1332 (In Russian) | MR | Zbl
[11] Roberts J., Stoll M., “Prime and principal ideals of algebra $N^+$”, Archiv der Mathematik, 27 (1976), 387–393 | DOI | MR | Zbl
[12] Shamoyan F., “Description of closed ideals in area Nevanlinna-Djrbashian spaces and characterizartion of elements of $N^+$”, Izv. Acad. Nauk Armenii, 6 (1988), 575–587 (In Russian) | MR | Zbl
[13] Zverovich V., “On certain spaces of analytic functions in circular rings”, Mat. Sbornik, 40(82) (1956), 225–238 (In Russian) | MR
[14] Kipen I., “Parametric representations and closed ideals in certain spaces of analytic functions in circular rings”, Proc. of conference. Mat. model. in hum. and natural sciences, 2000, 131, VGU (In Russian)
[15] Kasyaniuk S., “On functions of $A$ and $H$ spaces in cicular rings”, Mat. Sbornik, 42 (1957), 301–326 (In Russian)
[16] Shamoyan R., “On some new spaces of analytic functions of area Nevanlinna type in circular ring”, Proc. of Conference Harmonic analysis and approximation, Tsakhadzor. Armenia, 2011 (In English)
[17] Shamoyan R., On some parametric representations of new analytic area Nevanlinna type spaces in circular ring $K$, 2012