About a structure of exponential monomials on some locally compact abelian groups
Problemy analiza, Tome 1 (2012) no. 1, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the structure of some class of exponential monomials on some locally compact abelian groups. The main result of the paper is the next theorem. Let $\tilde{G}$ and $G$ be locally compact abelian groups, $\alpha : \tilde{G}\to G$ be a continuous surjective homomorphism and $H$ be a kernel of $\alpha$. If $\alpha$ is a an open maps from $\tilde{G}$ to $G$ then any exponential monomial $\Phi(t)$ on the group $\tilde{G}$, which satisfy the condition $\Phi(t+h)=\Phi(t)\forall h\in H, t\in \tilde{G}$, can be presented in the form $\Phi(t)=f(\alpha(t))$ for some exponential monomial $f(x)$ on the group $G$.
@article{PA_2012_1_1_a0,
     author = {S. S. Platonov},
     title = {About a structure of exponential monomials on some locally compact abelian groups},
     journal = {Problemy analiza},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2012_1_1_a0/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - About a structure of exponential monomials on some locally compact abelian groups
JO  - Problemy analiza
PY  - 2012
SP  - 3
EP  - 14
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2012_1_1_a0/
LA  - ru
ID  - PA_2012_1_1_a0
ER  - 
%0 Journal Article
%A S. S. Platonov
%T About a structure of exponential monomials on some locally compact abelian groups
%J Problemy analiza
%D 2012
%P 3-14
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2012_1_1_a0/
%G ru
%F PA_2012_1_1_a0
S. S. Platonov. About a structure of exponential monomials on some locally compact abelian groups. Problemy analiza, Tome 1 (2012) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/PA_2012_1_1_a0/

[1] Schvartz L., “Théorie générate des functions moynne-periodiques”, Ann. of Math., 48:2 (1947), 875–929

[2] Gilbert J. E., “On the ideal structure of some algebras of analytic functions”, Pacif. J. of Math., 35:3 (1978), 625–639 | DOI | MR

[3] Platonov S. S., “Spektralnyi sintez v nekotorykh funktsionalnykh topologicheskikh vektornykh prostranstvakh”, Algebra i analiz, 22:5 (2010), 154–185 | MR

[4] Gurevich D. I., “Kontrprimery k probleme L. Shvartsa”, Funkts. analiz i ego prilozh., 9:2 (1975), 29–35 | MR | Zbl

[5] Schvartz L., “Analyse et synthese harmonique dans les espaces de distributions”, Can. J. Math., 3 (1951), 503–512 | DOI | MR

[6] Szekelyhidi L., Discrete spectral synthesis and its applications, Springer, Berlin, 2006 | MR | Zbl

[7] Lefranc M., “Analyse spectrale sur $Z_n$”, C. R. Acad. Sci. Paris, 246 (1958), 1951–1953 | MR | Zbl

[8] Szekelyhidi L., “On discrete spectral synthesis”, Functional Equation — Results and Advances, eds. Z. Daroczy and Zs. Pales, Kluwer Academic Publishers, Dordrecht, 2002, 263–274 | DOI | MR | Zbl

[9] Bereczky A., Szekelyhidi L., “Spectral synthesis on torsion groups”, J. Math. Anal. Appl., 304 (2005), 607–613 | DOI | MR | Zbl

[10] Platonov S. S., “Spektralnyi sintez v prostranstve funktsii eksponentsialnogo rosta na konechno porozhdennoi abelevoi gruppe”, Algebra i analiz, 24:4 (2012), 182–200 | MR

[11] Szaekelyhidi L., “Spectral synthesis problems on locally compact groups”, Monatsh. Math., 161:2 (2010), 223–232 | DOI | MR

[12] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1973 | MR | Zbl