Условия звездообразности областей в $\mathbb{R}^{N}$
Problemy analiza, no. 18 (2011), pp. 70-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the domains with smooth boundary the criterion of starlikeness with respect to inner or boundary point has been proved. As a consequence we obtained all known conditions of starlikeness of biholomorphic mappings in the ball and polydisk and sufficient conditions of starlikeness of the domains with arbitrary boundary.
@article{PA_2011_18_a4,
     author = {V. V. Starkov},
     title = {{\CYRU}{\cyrs}{\cyrl}{\cyro}{\cyrv}{\cyri}{\cyrya} {\cyrz}{\cyrv}{\cyre}{\cyrz}{\cyrd}{\cyro}{\cyro}{\cyrb}{\cyrr}{\cyra}{\cyrz}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyro}{\cyrb}{\cyrl}{\cyra}{\cyrs}{\cyrt}{\cyre}{\cyrishrt} {\cyrv} $\mathbb{R}^{N}$},
     journal = {Problemy analiza},
     pages = {70--82},
     publisher = {mathdoc},
     number = {18},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2011_18_a4/}
}
TY  - JOUR
AU  - V. V. Starkov
TI  - Условия звездообразности областей в $\mathbb{R}^{N}$
JO  - Problemy analiza
PY  - 2011
SP  - 70
EP  - 82
IS  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2011_18_a4/
LA  - ru
ID  - PA_2011_18_a4
ER  - 
%0 Journal Article
%A V. V. Starkov
%T Условия звездообразности областей в $\mathbb{R}^{N}$
%J Problemy analiza
%D 2011
%P 70-82
%N 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2011_18_a4/
%G ru
%F PA_2011_18_a4
V. V. Starkov. Условия звездообразности областей в $\mathbb{R}^{N}$. Problemy analiza, no. 18 (2011), pp. 70-82. http://geodesic.mathdoc.fr/item/PA_2011_18_a4/

[1] Kikuchi K., “Starlike and convex mappings in several complex variables”, Pacific J. Math., 44 (1973), 569–580 | DOI | MR | Zbl

[2] Matsuno T., “On starlike and convex-like theorems in the complex vector space”, Sci. Rep. Tokyo Kyoiku Dajgaku, 1955, Sect. A5, 89–95

[3] Suffridge T. J., “Starlikenes, convexity and other geometric properties of holomorphic maps in higher dimensions”, Lect. Notes Math., 599 (1976), 146–159 | DOI | MR

[4] Liczberski P., Starkov V. V., “Starlikenes with respect to a boundary point and Julia's theorem in $C^n$”, J. Math. Anal. Appl., 366 (2010), 360–366 | DOI | MR | Zbl

[5] Milnor Dzh., Uolles A., Differentsialnaya topologiya, Mir, M., 1972, 277 pp. | Zbl

[6] Kolmogorov A. N., Fomin S. B., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 542 pp. | MR

[7] Dudova A. C., “Uslovie zvezdoobraznosti lebegova mnozhestva differentsiruemoi po napravleniyam funktsii”, Sb. nauch. tr. Sarat. un-ta. Seriya Matematika. Mekhanika, 2003, no. 5, 30–33