Градиентная идентификация эволюционных сеточных задач
Problemy analiza, no. 18 (2011), pp. 13-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the gradient of finite-dimensional functional in the space of large dimension with constraints. The system of constraints has special structure: it is a nonlinear evolutionary grid boundary-value problem.
@article{PA_2011_18_a1,
     author = {S. V. Manicheva and I. A. Chernov},
     title = {{\CYRG}{\cyrr}{\cyra}{\cyrd}{\cyri}{\cyre}{\cyrn}{\cyrt}{\cyrn}{\cyra}{\cyrya} {\cyri}{\cyrd}{\cyre}{\cyrn}{\cyrt}{\cyri}{\cyrf}{\cyri}{\cyrk}{\cyra}{\cyrc}{\cyri}{\cyrya} {\cyrerev}{\cyrv}{\cyro}{\cyrl}{\cyryu}{\cyrc}{\cyri}{\cyro}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyre}{\cyrt}{\cyro}{\cyrch}{\cyrn}{\cyrery}{\cyrh} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}},
     journal = {Problemy analiza},
     pages = {13--20},
     publisher = {mathdoc},
     number = {18},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2011_18_a1/}
}
TY  - JOUR
AU  - S. V. Manicheva
AU  - I. A. Chernov
TI  - Градиентная идентификация эволюционных сеточных задач
JO  - Problemy analiza
PY  - 2011
SP  - 13
EP  - 20
IS  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2011_18_a1/
LA  - ru
ID  - PA_2011_18_a1
ER  - 
%0 Journal Article
%A S. V. Manicheva
%A I. A. Chernov
%T Градиентная идентификация эволюционных сеточных задач
%J Problemy analiza
%D 2011
%P 13-20
%N 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2011_18_a1/
%G ru
%F PA_2011_18_a1
S. V. Manicheva; I. A. Chernov. Градиентная идентификация эволюционных сеточных задач. Problemy analiza, no. 18 (2011), pp. 13-20. http://geodesic.mathdoc.fr/item/PA_2011_18_a1/

[1] Zaika Yu. V., Rodchenkova N. I., “Modelirovanie vysokotemperaturnogo pika TDS-spektra degidrirovaniya”, Matematicheskoe modelirovanie, 18:4 (2006), 100–112 | Zbl

[2] Chernov I. A., “Matematicheskaya model ekzotermichnogo formirovaniya gidrida”, Matematicheskoe modelirovanie, 22:1 (2010), 3–16 | MR | Zbl

[3] Maykut G. A., Untersteiner N., “Some Results from a Time-Dependent Thermodynamic Model of Sea Ice”, Journal of Geophysical Research, 76:6 (1971), 1550–1575 | DOI

[4] Chernov I. A., “Maximum Principle for the Parabolic Boundary-Value Problems with Nonlinear Boundary Conditions and Inner State”, Mathematical Modelling, Mathematics Research Development series, ed. Christopher R. Brennan, 2011, 203–246

[5] Chernov I. A., “Skhodimost setochno-interpolyatsionnykh approksimatsii resheniya kvazilineinoi parabolicheskoi kraevoi zadachi na otrezke”, Trudy PetrGU. Seriya Matematika, 2010, no. 17, 26–37

[6] Rodchenkova N. I., Zaika Yu. V., “Numerical modelling of hydrogen desorption from cylindrical surface”, International Journal of Hydrogen Energy, 36 (2011), 1239–1247, Elsevier | DOI

[7] Marchuk G. I., Agoshkov V. I., Shutyaev V. P., Sopryazhennye uravneniya i metody vozmuschenii v nelineinykh zadachakh matematicheskoi fiziki, Fizmatlit, M., 1993, 224 pp. | MR