Граничное поведение мероморфных функций в многосвязных областях
Problemy analiza, no. 18 (2011), pp. 4-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved analog of the Caratheodorys theorem about boundary conformity in a case finitely connected domain in the first part. The second part is devoted to the proof of the Plesner's theorem for circular finitely connected domain.
@article{PA_2011_18_a0,
     author = {K. A. Bystrova},
     title = {{\CYRG}{\cyrr}{\cyra}{\cyrn}{\cyri}{\cyrch}{\cyrn}{\cyro}{\cyre} {\cyrp}{\cyro}{\cyrv}{\cyre}{\cyrd}{\cyre}{\cyrn}{\cyri}{\cyre} {\cyrm}{\cyre}{\cyrr}{\cyro}{\cyrm}{\cyro}{\cyrr}{\cyrf}{\cyrn}{\cyrery}{\cyrh} {\cyrf}{\cyru}{\cyrn}{\cyrk}{\cyrc}{\cyri}{\cyrishrt} {\cyrv} {\cyrm}{\cyrn}{\cyro}{\cyrg}{\cyro}{\cyrs}{\cyrv}{\cyrya}{\cyrz}{\cyrn}{\cyrery}{\cyrh} {\cyro}{\cyrb}{\cyrl}{\cyra}{\cyrs}{\cyrt}{\cyrya}{\cyrh}},
     journal = {Problemy analiza},
     pages = {4--12},
     publisher = {mathdoc},
     number = {18},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2011_18_a0/}
}
TY  - JOUR
AU  - K. A. Bystrova
TI  - Граничное поведение мероморфных функций в многосвязных областях
JO  - Problemy analiza
PY  - 2011
SP  - 4
EP  - 12
IS  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2011_18_a0/
LA  - ru
ID  - PA_2011_18_a0
ER  - 
%0 Journal Article
%A K. A. Bystrova
%T Граничное поведение мероморфных функций в многосвязных областях
%J Problemy analiza
%D 2011
%P 4-12
%N 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2011_18_a0/
%G ru
%F PA_2011_18_a0
K. A. Bystrova. Граничное поведение мероморфных функций в многосвязных областях. Problemy analiza, no. 18 (2011), pp. 4-12. http://geodesic.mathdoc.fr/item/PA_2011_18_a0/

[1] Karmazin A. P., Kvaziizometrii, teoriya predkontsov i metricheskie struktury prostranstvennykh oblastei. Primeneniya teorii predkontsov, Poligrafist, Khanty-Mansiisk, 2008

[2] Pommerenke Ch., Boundary Behaviour of Conformal Maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl

[3] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[4] Kollingvud E., Lovater L., Teoriya predelnykh mnozhestv, Mir, M., 1973

[5] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, 2-e izd., Izd-vo tekhniko-teoreticheskoi lit-ry, M.; L., 1950 | MR

[6] Piranian G., Lappan P., “Holomorphic functions with dense sets of Plessner points”, Proc. Amer. Math. Soc., 21:3 (1969), 555–556 | DOI | MR | Zbl

[7] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1969 | MR | Zbl

[8] Akilov G. P., Makarov B. M., Khavin V. P., Elementarnoe vvedenie v teoriyu integrala, Bukinist, L., 1969