The generalized Koebe function
Problemy analiza, no. 17 (2010), pp. 61-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We observe that the extremal function for $|a_{3}|$ within the class $U'_{\alpha}$ (see Starkov [1]) has as well the property that max $|A_{4}|>4.15$, if $\alpha=2$. The problem is equivalent to the global estimate for Meixner-Pollaczek polynomials $P^{1}_{3}(x;\theta)$.
@article{PA_2010_17_a5,
     author = {I. Naraniecka and J. Szynal and A. Tatarczak},
     title = {The generalized {Koebe} function},
     journal = {Problemy analiza},
     pages = {61--66},
     publisher = {mathdoc},
     number = {17},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2010_17_a5/}
}
TY  - JOUR
AU  - I. Naraniecka
AU  - J. Szynal
AU  - A. Tatarczak
TI  - The generalized Koebe function
JO  - Problemy analiza
PY  - 2010
SP  - 61
EP  - 66
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2010_17_a5/
LA  - en
ID  - PA_2010_17_a5
ER  - 
%0 Journal Article
%A I. Naraniecka
%A J. Szynal
%A A. Tatarczak
%T The generalized Koebe function
%J Problemy analiza
%D 2010
%P 61-66
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2010_17_a5/
%G en
%F PA_2010_17_a5
I. Naraniecka; J. Szynal; A. Tatarczak. The generalized Koebe function. Problemy analiza, no. 17 (2010), pp. 61-66. http://geodesic.mathdoc.fr/item/PA_2010_17_a5/

[1] Starkov V. V., “The estimates of coefficients in locally-univalent family $U'_{\alpha}$”, Vestnik Lenin. Gosud. Univ., 13 (1984), 48–54 (In Russian) | MR | Zbl

[2] Koekoek R., Swarttouw R. F., “The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue”, Report 98-17, Delft University of Technology, 1998

[3] Starkov V. V., Linear-invariant families of functions, Dissertation, Ekatirenburg, 1999, 287 pp. (In Russian)