Сходимость сеточно-интерполяционных аппроксимаций решения квазилинейной параболической краевой задачи на отрезке
Problemy analiza, no. 17 (2010), pp. 26-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the one-dimensional quazi-linear parabolic Neumann boundary value problem: coeffcients of the partial differential equation and right-hand sides of the boundary conditions depend on time, point, and the history of the solution. Convergence of difference approximations to a weak solution to the problem is proved.
@article{PA_2010_17_a2,
     author = {I. A. Chernov},
     title = {{\CYRS}{\cyrh}{\cyro}{\cyrd}{\cyri}{\cyrm}{\cyro}{\cyrs}{\cyrt}{\cyrsftsn} {\cyrs}{\cyre}{\cyrt}{\cyro}{\cyrch}{\cyrn}{\cyro}-{\cyri}{\cyrn}{\cyrt}{\cyre}{\cyrr}{\cyrp}{\cyro}{\cyrl}{\cyrya}{\cyrc}{\cyri}{\cyro}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyra}{\cyrp}{\cyrp}{\cyrr}{\cyro}{\cyrk}{\cyrs}{\cyri}{\cyrm}{\cyra}{\cyrc}{\cyri}{\cyrishrt} {\cyrr}{\cyre}{\cyrsh}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrk}{\cyrv}{\cyra}{\cyrz}{\cyri}{\cyrl}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyro}{\cyrishrt} {\cyrp}{\cyra}{\cyrr}{\cyra}{\cyrb}{\cyro}{\cyrl}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyro}{\cyrishrt} {\cyrk}{\cyrr}{\cyra}{\cyre}{\cyrv}{\cyro}{\cyrishrt} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyri} {\cyrn}{\cyra} {\cyro}{\cyrt}{\cyrr}{\cyre}{\cyrz}{\cyrk}{\cyre}},
     journal = {Problemy analiza},
     pages = {26--37},
     publisher = {mathdoc},
     number = {17},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2010_17_a2/}
}
TY  - JOUR
AU  - I. A. Chernov
TI  - Сходимость сеточно-интерполяционных аппроксимаций решения квазилинейной параболической краевой задачи на отрезке
JO  - Problemy analiza
PY  - 2010
SP  - 26
EP  - 37
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2010_17_a2/
LA  - ru
ID  - PA_2010_17_a2
ER  - 
%0 Journal Article
%A I. A. Chernov
%T Сходимость сеточно-интерполяционных аппроксимаций решения квазилинейной параболической краевой задачи на отрезке
%J Problemy analiza
%D 2010
%P 26-37
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2010_17_a2/
%G ru
%F PA_2010_17_a2
I. A. Chernov. Сходимость сеточно-интерполяционных аппроксимаций решения квазилинейной параболической краевой задачи на отрезке. Problemy analiza, no. 17 (2010), pp. 26-37. http://geodesic.mathdoc.fr/item/PA_2010_17_a2/

[1] Castro F. J., Meyer G., “Thermal desorption spectroscopy (TDS) method for hydrogen desorption characterization (I): theoretical aspects”, Journal of Alloys and Compounds, 330-332 (2002), 59–63 | DOI

[2] Zaika Yu. V., Rodchenkova N. I., “Diffuzionnyi pik TDS-spektra degidrirovaniya: kraevaya zadacha s podvizhnymi granitsami”, Matematicheskoe modelirovanie, 20:11 (2008), 67–79 | MR | Zbl

[3] Chernov I., Bloch J., Gabis I., “Mathematical modelling of $UH_3$ formation”, International Journal of Hydrogen Energy, 33 (2008), 5589–5595 | DOI

[4] Chernov I. A., “Matematicheskoe modelirovanie ekzotermicheskogo formirovaniya gidrida”, Matematicheskoe modelirovanie, 22:1 (2010), 3–16 | MR | Zbl

[5] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[6] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[7] Evans L. C., Partial differential equations, Amer. Math. Soc., Providence, 1991