Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2010_17_a1, author = {N. Yu. Svetova}, title = {{\CYRS}{\cyrv}{\cyro}{\cyrishrt}{\cyrs}{\cyrt}{\cyrv}{\cyro} {\cyrv}{\cyrery}{\cyrp}{\cyru}{\cyrk}{\cyrl}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrv}{\cyrz}{\cyra}{\cyri}{\cyrm}{\cyrn}{\cyrery}{\cyrh} {\cyrm}{\cyru}{\cyrl}{\cyrsftsn}{\cyrt}{\cyri}{\cyrf}{\cyrr}{\cyra}{\cyrk}{\cyrt}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrh} {\cyrr}{\cyra}{\cyrz}{\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyre}{\cyrishrt}}, journal = {Problemy analiza}, pages = {15--24}, publisher = {mathdoc}, number = {17}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PA_2010_17_a1/} }
N. Yu. Svetova. Свойство выпуклости взаимных мультифрактальных размерностей. Problemy analiza, no. 17 (2010), pp. 15-24. http://geodesic.mathdoc.fr/item/PA_2010_17_a1/
[1] Pesin Ya. B., Teoriya razmernostei i dinamicheskie sistemy: sovremennyi vzglyad i prilozheniya, Izd-vo instituta kompyuternykh issledovanii, M.; Izhevsk, 2002, 404 pp.
[2] Bogachev V. I., Osnovy teorii mery, v 2 t., v. 1, Izd-vo NITs Regulyarnaya i khaoticheskaya dinamika, M.; Izhevsk, 2003, 544 pp.
[3] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 471 pp.
[4] Svetova N. Yu., “Vzaimnye multifraktalnye spektry I. Tochnye spektry”, Trudy PetrGU. Ser. Matematika, 2004, no. 11, 42–47 | MR
[5] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987, 760 pp. | MR | Zbl
[6] Falconer K. J., Fractal geometry. Mathematical Foundations and Applications, John Wiley Sons, New York, 1990, 337 pp. | MR | Zbl
[7] Olsen L., “A multifractal formalism”, Advances in mathematics, 1995, no. 116, 82–195 | DOI | MR
[8] Olsen L., “Multifractal geometry”, Progress in probability, 46 (2000), 3–37 | MR | Zbl