The Sharp upper bound for $\mathfrak{R}(A_{3}-\lambda A_{2})$ in $U'_{\alpha}$
Problemy analiza, no. 15 (2008), pp. 17-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we determine the exact value of max $\mathfrak{R}(A_{3}-\lambda A_{2}), \lambda \in \mathbb{R}$, within the linearly invariant family $U'_{\alpha}$ introduced by V. V. Starkov in [4]. For $\lambda = 0$ the sharp estimate for $|A_{3}|$ follows. If $\alpha = 1$ the corresponding result is valid for convex univalent functions in the unit disk.
@article{PA_2008_15_a3,
     author = {I. Naraniecka},
     title = {The {Sharp} upper bound for $\mathfrak{R}(A_{3}-\lambda A_{2})$ in $U'_{\alpha}$},
     journal = {Problemy analiza},
     pages = {17--23},
     publisher = {mathdoc},
     number = {15},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2008_15_a3/}
}
TY  - JOUR
AU  - I. Naraniecka
TI  - The Sharp upper bound for $\mathfrak{R}(A_{3}-\lambda A_{2})$ in $U'_{\alpha}$
JO  - Problemy analiza
PY  - 2008
SP  - 17
EP  - 23
IS  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2008_15_a3/
LA  - en
ID  - PA_2008_15_a3
ER  - 
%0 Journal Article
%A I. Naraniecka
%T The Sharp upper bound for $\mathfrak{R}(A_{3}-\lambda A_{2})$ in $U'_{\alpha}$
%J Problemy analiza
%D 2008
%P 17-23
%N 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2008_15_a3/
%G en
%F PA_2008_15_a3
I. Naraniecka. The Sharp upper bound for $\mathfrak{R}(A_{3}-\lambda A_{2})$ in $U'_{\alpha}$. Problemy analiza, no. 15 (2008), pp. 17-23. http://geodesic.mathdoc.fr/item/PA_2008_15_a3/