The Sharp upper bound for $\mathfrak{R}(A_{3}-\lambda A_{2})$ in $U'_{\alpha}$
Problemy analiza, no. 15 (2008), pp. 17-23
Cet article a éte moissonné depuis la source Math-Net.Ru
In this note we determine the exact value of max $\mathfrak{R}(A_{3}-\lambda A_{2}), \lambda \in \mathbb{R}$, within the linearly invariant family $U'_{\alpha}$ introduced by V. V. Starkov in [4]. For $\lambda = 0$ the sharp estimate for $|A_{3}|$ follows. If $\alpha = 1$ the corresponding result is valid for convex univalent functions in the unit disk.
@article{PA_2008_15_a3,
author = {I. Naraniecka},
title = {The {Sharp} upper bound for $\mathfrak{R}(A_{3}-\lambda A_{2})$ in $U'_{\alpha}$},
journal = {Problemy analiza},
pages = {17--23},
year = {2008},
number = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PA_2008_15_a3/}
}
I. Naraniecka. The Sharp upper bound for $\mathfrak{R}(A_{3}-\lambda A_{2})$ in $U'_{\alpha}$. Problemy analiza, no. 15 (2008), pp. 17-23. http://geodesic.mathdoc.fr/item/PA_2008_15_a3/