On problems of univalence for the class $TR(1/2)$
Problemy analiza, no. 14 (2007), pp. 67-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss the class $TR(\frac{1}{2})$ consisted of typically real functions given by the integral formula $f(z) = \int \limits_{-1}^{1}\frac{z}{\sqrt{1-2zt+z^2}}d\mu(t)$, where $\mu$ is the probability measure on $[-1, 1]$.The problems of local univalence, univalence, convexity in the direction of real and imaginary axes are examined. This paper is the continuation of research on $TR(\frac{1}{2})$, especially concerning problems, which results were published in [5].
@article{PA_2007_14_a6,
     author = {M. Sobczak-Kne\'c and P. Zaprawa},
     title = {On problems of univalence for the class $TR(1/2)$},
     journal = {Problemy analiza},
     pages = {67--76},
     publisher = {mathdoc},
     number = {14},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2007_14_a6/}
}
TY  - JOUR
AU  - M. Sobczak-Kneć
AU  - P. Zaprawa
TI  - On problems of univalence for the class $TR(1/2)$
JO  - Problemy analiza
PY  - 2007
SP  - 67
EP  - 76
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2007_14_a6/
LA  - en
ID  - PA_2007_14_a6
ER  - 
%0 Journal Article
%A M. Sobczak-Kneć
%A P. Zaprawa
%T On problems of univalence for the class $TR(1/2)$
%J Problemy analiza
%D 2007
%P 67-76
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2007_14_a6/
%G en
%F PA_2007_14_a6
M. Sobczak-Kneć; P. Zaprawa. On problems of univalence for the class $TR(1/2)$. Problemy analiza, no. 14 (2007), pp. 67-76. http://geodesic.mathdoc.fr/item/PA_2007_14_a6/