Об одном свойстве задачи линейного программирования с псевдоинтервальными переменными
Problemy analiza, no. 13 (2006), pp. 38-45
Cet article a éte moissonné depuis la source Math-Net.Ru
The optimization task with linear constraints of pseudo-interval variables is discussed in the article. It is proofed that if the task has optimal solution, then there is a solution that has not more than $M$ non-zero variables ($M$ is the number of constraints of the task).
@article{PA_2006_13_a2,
author = {R. V. Voronov and V. V. Polyakov},
title = {{\CYRO}{\cyrb} {\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrm} {\cyrs}{\cyrv}{\cyro}{\cyrishrt}{\cyrs}{\cyrt}{\cyrv}{\cyre} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyri} {\cyrl}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrp}{\cyrr}{\cyro}{\cyrg}{\cyrr}{\cyra}{\cyrm}{\cyrm}{\cyri}{\cyrr}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyrya} {\cyrs} {\cyrp}{\cyrs}{\cyre}{\cyrv}{\cyrd}{\cyro}{\cyri}{\cyrn}{\cyrt}{\cyre}{\cyrr}{\cyrv}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrm}{\cyri} {\cyrp}{\cyre}{\cyrr}{\cyre}{\cyrm}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyrm}{\cyri}},
journal = {Problemy analiza},
pages = {38--45},
year = {2006},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PA_2006_13_a2/}
}
R. V. Voronov; V. V. Polyakov. Об одном свойстве задачи линейного программирования с псевдоинтервальными переменными. Problemy analiza, no. 13 (2006), pp. 38-45. http://geodesic.mathdoc.fr/item/PA_2006_13_a2/