Гармонический анализ Данкля и некоторые задачи теории приближений функций. II
Problemy analiza, no. 13 (2006), pp. 26-37
Cet article a éte moissonné depuis la source Math-Net.Ru
Using generalized translations of Dunkl we define Nikolskii — Besov type function spaces and obtain their description in terms of the best approximations.
@article{PA_2006_13_a1,
author = {E. S. Belkina},
title = {{\CYRG}{\cyra}{\cyrr}{\cyrm}{\cyro}{\cyrn}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrishrt} {\cyra}{\cyrn}{\cyra}{\cyrl}{\cyri}{\cyrz} {{\CYRD}{\cyra}{\cyrn}{\cyrk}{\cyrl}{\cyrya}} {\cyri} {\cyrn}{\cyre}{\cyrk}{\cyro}{\cyrt}{\cyro}{\cyrr}{\cyrery}{\cyre} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyri} {\cyrt}{\cyre}{\cyro}{\cyrr}{\cyri}{\cyri} {\cyrp}{\cyrr}{\cyri}{\cyrb}{\cyrl}{\cyri}{\cyrzh}{\cyre}{\cyrn}{\cyri}{\cyrishrt} {{\cyrf}{\cyru}{\cyrn}{\cyrk}{\cyrc}{\cyri}{\cyrishrt}.~II}},
journal = {Problemy analiza},
pages = {26--37},
year = {2006},
number = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PA_2006_13_a1/}
}
E. S. Belkina. Гармонический анализ Данкля и некоторые задачи теории приближений функций. II. Problemy analiza, no. 13 (2006), pp. 26-37. http://geodesic.mathdoc.fr/item/PA_2006_13_a1/