Koebe domains for the class of typically real odd functions
Problemy analiza, no. 12 (2005), pp. 51-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss the generalized Koebe domains for the class $T ^{(2)}$ and the set $D\subset \Delta=\{z\in \mathbb{C}:|z| 1\}$, i.e. the sets of the form $\cap_{f\in TM} f(D)$. The main idea we work with is the method of the envelope. We determine the Koebe domains for $H=\{z\in \Delta : |z^{2}+1|>2|z|\}$ and for special sets $\Omega_{\alpha}, \alpha \le \frac{4}{3}$. It appears that the set $\Omega_{\frac{4}{3}}$ is the largest subset of $\Delta$ for which one can compute the Koebe domain with the use of this method. It means that the set $K_{T^{(2)}}(\Omega_{\frac{4}{3}})\cup K_T (\Delta)$ is the largest subset of the still unknown set $K_{T^{(2)}}(\Delta)$ which we are able to derive.
@article{PA_2005_12_a5,
     author = {L. Koczan and P. Zaprawa},
     title = {Koebe domains for the class of typically real odd functions},
     journal = {Problemy analiza},
     pages = {51--70},
     publisher = {mathdoc},
     number = {12},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2005_12_a5/}
}
TY  - JOUR
AU  - L. Koczan
AU  - P. Zaprawa
TI  - Koebe domains for the class of typically real odd functions
JO  - Problemy analiza
PY  - 2005
SP  - 51
EP  - 70
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2005_12_a5/
LA  - en
ID  - PA_2005_12_a5
ER  - 
%0 Journal Article
%A L. Koczan
%A P. Zaprawa
%T Koebe domains for the class of typically real odd functions
%J Problemy analiza
%D 2005
%P 51-70
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2005_12_a5/
%G en
%F PA_2005_12_a5
L. Koczan; P. Zaprawa. Koebe domains for the class of typically real odd functions. Problemy analiza, no. 12 (2005), pp. 51-70. http://geodesic.mathdoc.fr/item/PA_2005_12_a5/