On metric space valued functions of bounded essential variation
Problemy analiza, no. 12 (2005), pp. 3-12
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\emptyset \ne T \subset \mathbb{R}$ and let $X$ be a metric space. For an ideal $\mathcal{J}\subset \mathcal{P}(T)$ and a function $f:T\to X$, we define the essential variation $V^{\mathcal{J}}_{ess}(f, T)$ as the in mum of all variations $V (g, T)$ where $g:T\to X, g = f$ on $T\setminus E$, and $E \in \mathcal{J}$. We show that if $X$ is complete then the essential variation of $f$ is equal to inf$\{V (f; T\setminus E) : E \in \mathcal{J}\}$. This extends former theorems of that type. We list some consequences that are analogues to the recent results by Chistyakov. Some examples of di erent kinds of essential variation are also investigated.
@article{PA_2005_12_a0,
author = {M. Balcerzak and M. Ma{\l}olepszy},
title = {On metric space valued functions of bounded essential variation},
journal = {Problemy analiza},
pages = {3--12},
year = {2005},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PA_2005_12_a0/}
}
M. Balcerzak; M. Małolepszy. On metric space valued functions of bounded essential variation. Problemy analiza, no. 12 (2005), pp. 3-12. http://geodesic.mathdoc.fr/item/PA_2005_12_a0/