О носителях максимальных сцепленных систем
Problemy analiza, no. 11 (2004), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the functor of superextension. By definition, the superextansion of a compact space consist of all maximal linked systems of that space. It is well known that the support of a maximal linked system coincides with the closed union of all its elements that are minimal with respect to inclusion. In this work it is shown by way of a counterexample that the union itself is not necessarily closed.
@article{PA_2004_11_a0,
     author = {E. V. Vakulova},
     title = {{\CYRO} {\cyrn}{\cyro}{\cyrs}{\cyri}{\cyrt}{\cyre}{\cyrl}{\cyrya}{\cyrh} {\cyrm}{\cyra}{\cyrk}{\cyrs}{\cyri}{\cyrm}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyrc}{\cyre}{\cyrp}{\cyrl}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyri}{\cyrs}{\cyrt}{\cyre}{\cyrm}},
     journal = {Problemy analiza},
     pages = {3--8},
     publisher = {mathdoc},
     number = {11},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2004_11_a0/}
}
TY  - JOUR
AU  - E. V. Vakulova
TI  - О носителях максимальных сцепленных систем
JO  - Problemy analiza
PY  - 2004
SP  - 3
EP  - 8
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2004_11_a0/
LA  - ru
ID  - PA_2004_11_a0
ER  - 
%0 Journal Article
%A E. V. Vakulova
%T О носителях максимальных сцепленных систем
%J Problemy analiza
%D 2004
%P 3-8
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2004_11_a0/
%G ru
%F PA_2004_11_a0
E. V. Vakulova. О носителях максимальных сцепленных систем. Problemy analiza, no. 11 (2004), pp. 3-8. http://geodesic.mathdoc.fr/item/PA_2004_11_a0/