О носителях максимальных сцепленных систем
Problemy analiza, no. 11 (2004), pp. 3-8
Cet article a éte moissonné depuis la source Math-Net.Ru
This article is devoted to the functor of superextension. By definition, the superextansion of a compact space consist of all maximal linked systems of that space. It is well known that the support of a maximal linked system coincides with the closed union of all its elements that are minimal with respect to inclusion. In this work it is shown by way of a counterexample that the union itself is not necessarily closed.
@article{PA_2004_11_a0,
author = {E. V. Vakulova},
title = {{\CYRO} {\cyrn}{\cyro}{\cyrs}{\cyri}{\cyrt}{\cyre}{\cyrl}{\cyrya}{\cyrh} {\cyrm}{\cyra}{\cyrk}{\cyrs}{\cyri}{\cyrm}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyrc}{\cyre}{\cyrp}{\cyrl}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyri}{\cyrs}{\cyrt}{\cyre}{\cyrm}},
journal = {Problemy analiza},
pages = {3--8},
year = {2004},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PA_2004_11_a0/}
}
E. V. Vakulova. О носителях максимальных сцепленных систем. Problemy analiza, no. 11 (2004), pp. 3-8. http://geodesic.mathdoc.fr/item/PA_2004_11_a0/