Условные и взаимные мультифрактальные спектры. Определение и основные свойства.
Problemy analiza, no. 10 (2003), pp. 41-58
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper introduces a formalism for the multifractal analysis of one probability measure with respect to another. The conditional and the mutual multifractal spectra are considered, which give the better understanding of influence of local geometry of fractal measures against each other.
@article{PA_2003_10_a4,
author = {N. Yu. Svetova},
title = {{\CYRU}{\cyrs}{\cyrl}{\cyro}{\cyrv}{\cyrn}{\cyrery}{\cyre} {\cyri} {\cyrv}{\cyrz}{\cyra}{\cyri}{\cyrm}{\cyrn}{\cyrery}{\cyre} {\cyrm}{\cyru}{\cyrl}{\cyrsftsn}{\cyrt}{\cyri}{\cyrf}{\cyrr}{\cyra}{\cyrk}{\cyrt}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyre} {\cyrs}{\cyrp}{\cyre}{\cyrk}{\cyrt}{\cyrr}{\cyrery}. {{\CYRO}{\cyrp}{\cyrr}{\cyre}{\cyrd}{\cyre}{\cyrl}{\cyre}{\cyrn}{\cyri}{\cyre}} {\cyri} {\cyro}{\cyrs}{\cyrn}{\cyro}{\cyrv}{\cyrn}{\cyrery}{\cyre} {\cyrs}{\cyrv}{\cyro}{\cyrishrt}{\cyrs}{\cyrt}{\cyrv}{\cyra}.},
journal = {Problemy analiza},
pages = {41--58},
year = {2003},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PA_2003_10_a4/}
}
N. Yu. Svetova. Условные и взаимные мультифрактальные спектры. Определение и основные свойства.. Problemy analiza, no. 10 (2003), pp. 41-58. http://geodesic.mathdoc.fr/item/PA_2003_10_a4/