Multivalent $\alpha$ --- convex harmonic mappings
Problemy analiza, no. 9 (2002), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give coefficient conditions for complex-valued harmonic functions that are ultivalent, sense-preserving and $\alpha$-convex. We determine the extreme points, distortion and covering theorems for these mappings.
@article{PA_2002_9_a0,
     author = {A. Ganczar},
     title = {Multivalent $\alpha$ --- convex harmonic mappings},
     journal = {Problemy analiza},
     pages = {3--13},
     publisher = {mathdoc},
     number = {9},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2002_9_a0/}
}
TY  - JOUR
AU  - A. Ganczar
TI  - Multivalent $\alpha$ --- convex harmonic mappings
JO  - Problemy analiza
PY  - 2002
SP  - 3
EP  - 13
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2002_9_a0/
LA  - en
ID  - PA_2002_9_a0
ER  - 
%0 Journal Article
%A A. Ganczar
%T Multivalent $\alpha$ --- convex harmonic mappings
%J Problemy analiza
%D 2002
%P 3-13
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2002_9_a0/
%G en
%F PA_2002_9_a0
A. Ganczar. Multivalent $\alpha$ --- convex harmonic mappings. Problemy analiza, no. 9 (2002), pp. 3-13. http://geodesic.mathdoc.fr/item/PA_2002_9_a0/