Понятие клеточного подфунктора ковариантного функтора в категории COMP
Problemy analiza, no. 8 (2001), pp. 37-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

It has introduced the concept of cellular subfunctor in the category COMP of all compact spaces and their mappings. We has proved that the space of all nonempty closed subsets of $X$ is cellular embed to the $\lambda(X\cup \{p\})$. One of the general results proved in this article is the equality $c(F(X))=c(X^{\omega})$ for covariant functors $\mathcal{N}^k, \lambda$ and $G$.
@article{PA_2001_8_a3,
     author = {N. Yu. Svetova},
     title = {{\CYRP}{\cyro}{\cyrn}{\cyrya}{\cyrt}{\cyri}{\cyre} {\cyrk}{\cyrl}{\cyre}{\cyrt}{\cyro}{\cyrch}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrp}{\cyro}{\cyrd}{\cyrf}{\cyru}{\cyrn}{\cyrk}{\cyrt}{\cyro}{\cyrr}{\cyra} {\cyrk}{\cyro}{\cyrv}{\cyra}{\cyrr}{\cyri}{\cyra}{\cyrn}{\cyrt}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrf}{\cyru}{\cyrn}{\cyrk}{\cyrt}{\cyro}{\cyrr}{\cyra} {\cyrv} {\cyrk}{\cyra}{\cyrt}{\cyre}{\cyrg}{\cyro}{\cyrr}{\cyri}{\cyri} {COMP}},
     journal = {Problemy analiza},
     pages = {37--48},
     publisher = {mathdoc},
     number = {8},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2001_8_a3/}
}
TY  - JOUR
AU  - N. Yu. Svetova
TI  - Понятие клеточного подфунктора ковариантного функтора в категории COMP
JO  - Problemy analiza
PY  - 2001
SP  - 37
EP  - 48
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2001_8_a3/
LA  - ru
ID  - PA_2001_8_a3
ER  - 
%0 Journal Article
%A N. Yu. Svetova
%T Понятие клеточного подфунктора ковариантного функтора в категории COMP
%J Problemy analiza
%D 2001
%P 37-48
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2001_8_a3/
%G ru
%F PA_2001_8_a3
N. Yu. Svetova. Понятие клеточного подфунктора ковариантного функтора в категории COMP. Problemy analiza, no. 8 (2001), pp. 37-48. http://geodesic.mathdoc.fr/item/PA_2001_8_a3/