Понятие клеточного подфунктора ковариантного функтора в категории COMP
Problemy analiza, no. 8 (2001), pp. 37-48
Cet article a éte moissonné depuis la source Math-Net.Ru
It has introduced the concept of cellular subfunctor in the category COMP of all compact spaces and their mappings. We has proved that the space of all nonempty closed subsets of $X$ is cellular embed to the $\lambda(X\cup \{p\})$. One of the general results proved in this article is the equality $c(F(X))=c(X^{\omega})$ for covariant functors $\mathcal{N}^k, \lambda$ and $G$.
@article{PA_2001_8_a3,
author = {N. Yu. Svetova},
title = {{\CYRP}{\cyro}{\cyrn}{\cyrya}{\cyrt}{\cyri}{\cyre} {\cyrk}{\cyrl}{\cyre}{\cyrt}{\cyro}{\cyrch}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrp}{\cyro}{\cyrd}{\cyrf}{\cyru}{\cyrn}{\cyrk}{\cyrt}{\cyro}{\cyrr}{\cyra} {\cyrk}{\cyro}{\cyrv}{\cyra}{\cyrr}{\cyri}{\cyra}{\cyrn}{\cyrt}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrf}{\cyru}{\cyrn}{\cyrk}{\cyrt}{\cyro}{\cyrr}{\cyra} {\cyrv} {\cyrk}{\cyra}{\cyrt}{\cyre}{\cyrg}{\cyro}{\cyrr}{\cyri}{\cyri} {COMP}},
journal = {Problemy analiza},
pages = {37--48},
year = {2001},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PA_2001_8_a3/}
}
N. Yu. Svetova. Понятие клеточного подфунктора ковариантного функтора в категории COMP. Problemy analiza, no. 8 (2001), pp. 37-48. http://geodesic.mathdoc.fr/item/PA_2001_8_a3/