Классическое решение краевой задачи с динамическими граничными условиями
Problemy analiza, no. 7 (2000), pp. 109-121
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper the model of termodesorbtion spectometry method of studying gas transfer in solids is considered. The model considers not only diffusion, but also complex physical and chemical processes on the surface, which lead us to the boundary-value problem with non-classical boundary conditions. The existance and uniqueness of the classical (differentiable) solution of the problem is proved.
@article{PA_2000_7_a8,
author = {I. A. Chernov},
title = {{\CYRK}{\cyrl}{\cyra}{\cyrs}{\cyrs}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyro}{\cyre} {\cyrr}{\cyre}{\cyrsh}{\cyre}{\cyrn}{\cyri}{\cyre} {\cyrk}{\cyrr}{\cyra}{\cyre}{\cyrv}{\cyro}{\cyrishrt} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyri} {\cyrs} {\cyrd}{\cyri}{\cyrn}{\cyra}{\cyrm}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrm}{\cyri} {\cyrg}{\cyrr}{\cyra}{\cyrn}{\cyri}{\cyrch}{\cyrn}{\cyrery}{\cyrm}{\cyri} {\cyru}{\cyrs}{\cyrl}{\cyro}{\cyrv}{\cyri}{\cyrya}{\cyrm}{\cyri}},
journal = {Problemy analiza},
pages = {109--121},
year = {2000},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PA_2000_7_a8/}
}
I. A. Chernov. Классическое решение краевой задачи с динамическими граничными условиями. Problemy analiza, no. 7 (2000), pp. 109-121. http://geodesic.mathdoc.fr/item/PA_2000_7_a8/