$H$-структуры и $e$-компактификации
Problemy analiza, no. 7 (2000), pp. 54-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main subject of this paper is notion of $H$-structure introduced in [6] by V.V. Fedorchuk. Recall that an $H$-structure is a family of $\theta$-proximities (see [5] and [4]), and there is a one-to-one correspondence between the set of all $H$-structures on a semiregular Hausdorff space $X$ and the set of all semiregular $H$-closed extensions of $X$. Theorem 2 of this paper shows what restrictions it is necessary to impose on an $H$-structure in order to obtain an $e$-compactification (see [7]) of $X$ Theorem 3 says that the family of all $\theta$-proximities on a semiregular space $X$ forms an $H$-structure on $X$ if $X$ is locally $H$-closed (i. e. every point of $X$ has an open neighbourhood the closure of whitch is $H$-closed). Theorem 1 gives some preliminary characteristics of localy $H$-closed spaces.
@article{PA_2000_7_a4,
     author = {K. V. Matyushichev},
     title = {$H$-{\cyrs}{\cyrt}{\cyrr}{\cyru}{\cyrk}{\cyrt}{\cyru}{\cyrr}{\cyrery} {\cyri} $e$-{\cyrk}{\cyro}{\cyrm}{\cyrp}{\cyra}{\cyrk}{\cyrt}{\cyri}{\cyrf}{\cyri}{\cyrk}{\cyra}{\cyrc}{\cyri}{\cyri}},
     journal = {Problemy analiza},
     pages = {54--69},
     publisher = {mathdoc},
     number = {7},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2000_7_a4/}
}
TY  - JOUR
AU  - K. V. Matyushichev
TI  - $H$-структуры и $e$-компактификации
JO  - Problemy analiza
PY  - 2000
SP  - 54
EP  - 69
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2000_7_a4/
LA  - ru
ID  - PA_2000_7_a4
ER  - 
%0 Journal Article
%A K. V. Matyushichev
%T $H$-структуры и $e$-компактификации
%J Problemy analiza
%D 2000
%P 54-69
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2000_7_a4/
%G ru
%F PA_2000_7_a4
K. V. Matyushichev. $H$-структуры и $e$-компактификации. Problemy analiza, no. 7 (2000), pp. 54-69. http://geodesic.mathdoc.fr/item/PA_2000_7_a4/