О степенных спектрах и композициях финитно строго эпиморфных функторов
Problemy analiza, no. 7 (2000), pp. 15-29
Cet article a éte moissonné depuis la source Math-Net.Ru
The degree spectrum $sp(F)$ of functor $F$ is a set of degrees of points in spaces of the form $F(X)$. We prove that for any subset $K\subset N$ there is strictly epimorphic functor $F$ satisfying certain normality conditions with $sp(F)=K$. We also prove that for strictly epimorphic functor $F$ the composition $F\circ G$ is strictly epimorphic if $sp(F)=N$ and $G$ preserve finite spaces. The composition $G\circ F$ is also strictly epimorphic for any $G$ if $F$ has extension property for finite sections.
@article{PA_2000_7_a1,
author = {A. V. Ivanov},
title = {{\CYRO} {\cyrs}{\cyrt}{\cyre}{\cyrp}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyrp}{\cyre}{\cyrk}{\cyrt}{\cyrr}{\cyra}{\cyrh} {\cyri} {\cyrk}{\cyro}{\cyrm}{\cyrp}{\cyro}{\cyrz}{\cyri}{\cyrc}{\cyri}{\cyrya}{\cyrh} {\cyrf}{\cyri}{\cyrn}{\cyri}{\cyrt}{\cyrn}{\cyro} {\cyrs}{\cyrt}{\cyrr}{\cyro}{\cyrg}{\cyro} {\cyrerev}{\cyrp}{\cyri}{\cyrm}{\cyro}{\cyrr}{\cyrf}{\cyrn}{\cyrery}{\cyrh} {\cyrf}{\cyru}{\cyrn}{\cyrk}{\cyrt}{\cyro}{\cyrr}{\cyro}{\cyrv}},
journal = {Problemy analiza},
pages = {15--29},
year = {2000},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PA_2000_7_a1/}
}
A. V. Ivanov. О степенных спектрах и композициях финитно строго эпиморфных функторов. Problemy analiza, no. 7 (2000), pp. 15-29. http://geodesic.mathdoc.fr/item/PA_2000_7_a1/