О степенных спектрах и композициях финитно строго эпиморфных функторов
Problemy analiza, no. 7 (2000), pp. 15-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The degree spectrum $sp(F)$ of functor $F$ is a set of degrees of points in spaces of the form $F(X)$. We prove that for any subset $K\subset N$ there is strictly epimorphic functor $F$ satisfying certain normality conditions with $sp(F)=K$. We also prove that for strictly epimorphic functor $F$ the composition $F\circ G$ is strictly epimorphic if $sp(F)=N$ and $G$ preserve finite spaces. The composition $G\circ F$ is also strictly epimorphic for any $G$ if $F$ has extension property for finite sections.
@article{PA_2000_7_a1,
     author = {A. V. Ivanov},
     title = {{\CYRO} {\cyrs}{\cyrt}{\cyre}{\cyrp}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyrp}{\cyre}{\cyrk}{\cyrt}{\cyrr}{\cyra}{\cyrh} {\cyri} {\cyrk}{\cyro}{\cyrm}{\cyrp}{\cyro}{\cyrz}{\cyri}{\cyrc}{\cyri}{\cyrya}{\cyrh} {\cyrf}{\cyri}{\cyrn}{\cyri}{\cyrt}{\cyrn}{\cyro} {\cyrs}{\cyrt}{\cyrr}{\cyro}{\cyrg}{\cyro} {\cyrerev}{\cyrp}{\cyri}{\cyrm}{\cyro}{\cyrr}{\cyrf}{\cyrn}{\cyrery}{\cyrh} {\cyrf}{\cyru}{\cyrn}{\cyrk}{\cyrt}{\cyro}{\cyrr}{\cyro}{\cyrv}},
     journal = {Problemy analiza},
     pages = {15--29},
     publisher = {mathdoc},
     number = {7},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2000_7_a1/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - О степенных спектрах и композициях финитно строго эпиморфных функторов
JO  - Problemy analiza
PY  - 2000
SP  - 15
EP  - 29
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2000_7_a1/
LA  - ru
ID  - PA_2000_7_a1
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T О степенных спектрах и композициях финитно строго эпиморфных функторов
%J Problemy analiza
%D 2000
%P 15-29
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2000_7_a1/
%G ru
%F PA_2000_7_a1
A. V. Ivanov. О степенных спектрах и композициях финитно строго эпиморфных функторов. Problemy analiza, no. 7 (2000), pp. 15-29. http://geodesic.mathdoc.fr/item/PA_2000_7_a1/