О вполне регулярных пространствах, для которых $eX=\beta X$
Problemy analiza, no. 6 (1999), pp. 46-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $eX$ denote the largest semiregular $e$-compactification of an $e$-compactifiable space $X$. In [1] K. P. Hart and J. Vermeer presented an example of a completely regular space $X$ for which $eX\ne \beta X$, thus distinguishing a new class of completely regular spaces having the property $eX= \beta X$. This paper shows that this property is not preserved by sums, subspaces and Cartesian products. A few remarks are made about $eX$ itself. Finally, we introduce countably regular spaces that are presumably intermediate between completely regular and regular spaces. A space $X$ is called countably regular (CR) if it has a countably regular (CR) base, i. e., a base $\beta$ such that for every $U\in; \beta$ there exists a sequence $\{U_{n}\}_{n=1}^{\infty}$ in $\beta$ such that $U=\cup_{n=1}^{\infty} U_{n}$ and $[U_{n}]\subset U$ for each $n\in \mathbb{N}$. Most widely known regular non-completely regular spaces are not CR. Every time there is machinery killing complete regularity it also kills CR. Two questions arise. Does there exist a CR space that is not completely regular? Does countable regularity imply $e$-compactifiability as is the case with complete regularity?
@article{PA_1999_6_a5,
     author = {K. V. Matyushichev},
     title = {{\CYRO} {\cyrv}{\cyrp}{\cyro}{\cyrl}{\cyrn}{\cyre} {\cyrr}{\cyre}{\cyrg}{\cyru}{\cyrl}{\cyrya}{\cyrr}{\cyrn}{\cyrery}{\cyrh} {\cyrp}{\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyrr}{\cyra}{\cyrn}{\cyrs}{\cyrt}{\cyrv}{\cyra}{\cyrh}, {\cyrd}{\cyrl}{\cyrya} {\cyrk}{\cyro}{\cyrt}{\cyro}{\cyrr}{\cyrery}{\cyrh} $eX=\beta X$},
     journal = {Problemy analiza},
     pages = {46--56},
     publisher = {mathdoc},
     number = {6},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_1999_6_a5/}
}
TY  - JOUR
AU  - K. V. Matyushichev
TI  - О вполне регулярных пространствах, для которых $eX=\beta X$
JO  - Problemy analiza
PY  - 1999
SP  - 46
EP  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_1999_6_a5/
LA  - ru
ID  - PA_1999_6_a5
ER  - 
%0 Journal Article
%A K. V. Matyushichev
%T О вполне регулярных пространствах, для которых $eX=\beta X$
%J Problemy analiza
%D 1999
%P 46-56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_1999_6_a5/
%G ru
%F PA_1999_6_a5
K. V. Matyushichev. О вполне регулярных пространствах, для которых $eX=\beta X$. Problemy analiza, no. 6 (1999), pp. 46-56. http://geodesic.mathdoc.fr/item/PA_1999_6_a5/