Интегральные операторы восстановления фазового вектора динамических систем
Problemy analiza, no. 6 (1999), pp. 15-24
Cet article a éte moissonné depuis la source Math-Net.Ru
In function dependence terms a description of observable functions in nonlinear analytical dynamical systems is obtained. An analogue of the duality principle in linear systems is developed for the nonlinear case.
@article{PA_1999_6_a1,
author = {Yu. V. Zaika},
title = {{\CYRI}{\cyrn}{\cyrt}{\cyre}{\cyrg}{\cyrr}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyre} {\cyro}{\cyrp}{\cyre}{\cyrr}{\cyra}{\cyrt}{\cyro}{\cyrr}{\cyrery} {\cyrv}{\cyro}{\cyrs}{\cyrs}{\cyrt}{\cyra}{\cyrn}{\cyro}{\cyrv}{\cyrl}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrf}{\cyra}{\cyrz}{\cyro}{\cyrv}{\cyro}{\cyrg}{\cyro} {\cyrv}{\cyre}{\cyrk}{\cyrt}{\cyro}{\cyrr}{\cyra} {\cyrd}{\cyri}{\cyrn}{\cyra}{\cyrm}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrh} {\cyrs}{\cyri}{\cyrs}{\cyrt}{\cyre}{\cyrm}},
journal = {Problemy analiza},
pages = {15--24},
year = {1999},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PA_1999_6_a1/}
}
Yu. V. Zaika. Интегральные операторы восстановления фазового вектора динамических систем. Problemy analiza, no. 6 (1999), pp. 15-24. http://geodesic.mathdoc.fr/item/PA_1999_6_a1/