Линейно-инвариантные семейства отображений шара в $C^{N}$
Problemy analiza, no. 6 (1999), pp. 3-14
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper we suggest a new definition of the order of a linearly invariant family of locally biholomorphic mappings of the unit ball in $\mathbb{C}^{n}$. This definition is equivalent to the one given by Pfaltzgraff in [1]. It bases on a very simple relationship with the Jacobian of the mappings (see Corollary 1). It appears that the order of a mapping depends only on its Jacobian (see Proposition 1).
@article{PA_1999_6_a0,
author = {J. Godula and P. Liczberski and V. V. Starkov},
title = {{\CYRL}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyro}-{\cyri}{\cyrn}{\cyrv}{\cyra}{\cyrr}{\cyri}{\cyra}{\cyrn}{\cyrt}{\cyrn}{\cyrery}{\cyre} {\cyrs}{\cyre}{\cyrm}{\cyre}{\cyrishrt}{\cyrs}{\cyrt}{\cyrv}{\cyra} {\cyro}{\cyrt}{\cyro}{\cyrb}{\cyrr}{\cyra}{\cyrzh}{\cyre}{\cyrn}{\cyri}{\cyrishrt} {\cyrsh}{\cyra}{\cyrr}{\cyra} {\cyrv} $C^{N}$},
journal = {Problemy analiza},
pages = {3--14},
year = {1999},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PA_1999_6_a0/}
}
J. Godula; P. Liczberski; V. V. Starkov. Линейно-инвариантные семейства отображений шара в $C^{N}$. Problemy analiza, no. 6 (1999), pp. 3-14. http://geodesic.mathdoc.fr/item/PA_1999_6_a0/