Степени числа простых делителей и числа делителей на последовательных числах
Problemy analiza, no. 5 (1998), pp. 151-160
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of this paper belongs to the set of problems known as the additive divisors problem. It's proved asimtotic formulas for sums (2) and (3) for $g(n)=\omega(n)$ and $g(n)=\Omega(n)$.
@article{PA_1998_5_a10,
author = {M. B. Khripunova},
title = {{\CYRS}{\cyrt}{\cyre}{\cyrp}{\cyre}{\cyrn}{\cyri} {\cyrch}{\cyri}{\cyrs}{\cyrl}{\cyra} {\cyrp}{\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyrery}{\cyrh} {\cyrd}{\cyre}{\cyrl}{\cyri}{\cyrt}{\cyre}{\cyrl}{\cyre}{\cyrishrt} {\cyri} {\cyrch}{\cyri}{\cyrs}{\cyrl}{\cyra} {\cyrd}{\cyre}{\cyrl}{\cyri}{\cyrt}{\cyre}{\cyrl}{\cyre}{\cyrishrt} {\cyrn}{\cyra} {\cyrp}{\cyro}{\cyrs}{\cyrl}{\cyre}{\cyrd}{\cyro}{\cyrv}{\cyra}{\cyrt}{\cyre}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrh} {\cyrch}{\cyri}{\cyrs}{\cyrl}{\cyra}{\cyrh}},
journal = {Problemy analiza},
pages = {151--160},
year = {1998},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PA_1998_5_a10/}
}
M. B. Khripunova. Степени числа простых делителей и числа делителей на последовательных числах. Problemy analiza, no. 5 (1998), pp. 151-160. http://geodesic.mathdoc.fr/item/PA_1998_5_a10/