Invariant subspaces in functional spaces of polynomial growth on $\mathbb{R}^{N}$
Problemy analiza, no. 4 (1997), pp. 105-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a transitive group of transformations of a set $M, \mathcal{F}$ be some locally convex space consisting of complex-valued functions on $M, \pi(g): f(x)\to f(g^{-1}x), f(x)\in \mathcal{F}$ be the quasiregular representation of $G$. A linear subspace $H\subseteq \mathcal{F}$ we call an invariant subspace if $H$ is closed and invariant with respect to the representation $\pi$. In the paper we consider the case when $M$ is $n$-dimensional Euclidean space $R^{n}, G$ is the group of all orientation-preserving isometries. The function spaces are spaces of polynomial growth, for example $\mathcal{F}=S'$ is the space of tempered distributions on $R^{n}$. The main result of the paper is the complele description of invariant subspaces of this function spaces. In particular we obtain the description of irreductible and indecomposable subspaces.
@article{PA_1997_4_a8,
     author = {S. S. Platonov},
     title = {Invariant subspaces in functional spaces of polynomial growth on $\mathbb{R}^{N}$},
     journal = {Problemy analiza},
     pages = {105--124},
     publisher = {mathdoc},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_1997_4_a8/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - Invariant subspaces in functional spaces of polynomial growth on $\mathbb{R}^{N}$
JO  - Problemy analiza
PY  - 1997
SP  - 105
EP  - 124
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_1997_4_a8/
LA  - ru
ID  - PA_1997_4_a8
ER  - 
%0 Journal Article
%A S. S. Platonov
%T Invariant subspaces in functional spaces of polynomial growth on $\mathbb{R}^{N}$
%J Problemy analiza
%D 1997
%P 105-124
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_1997_4_a8/
%G ru
%F PA_1997_4_a8
S. S. Platonov. Invariant subspaces in functional spaces of polynomial growth on $\mathbb{R}^{N}$. Problemy analiza, no. 4 (1997), pp. 105-124. http://geodesic.mathdoc.fr/item/PA_1997_4_a8/