Linearly invariant families of harmonic locally quasiconformal mappings
Problemy analiza, no. 4 (1997), pp. 50-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [2,3] harmonic locally $K$-quasiconformal families of functions de ned in the unit disc were introduced. In this paper we continue the study of the boundary behaviour of maps form such families. In particular, for functions $f$ from the family we investigate cluster sets $C(e^{i\theta}, f)$ and consider the problem od degenerating of a cluster set to a point.
@article{PA_1997_4_a2,
     author = {J. Godula and V. V. Starkov},
     title = {Linearly invariant families of harmonic locally quasiconformal mappings},
     journal = {Problemy analiza},
     pages = {50--61},
     publisher = {mathdoc},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_1997_4_a2/}
}
TY  - JOUR
AU  - J. Godula
AU  - V. V. Starkov
TI  - Linearly invariant families of harmonic locally quasiconformal mappings
JO  - Problemy analiza
PY  - 1997
SP  - 50
EP  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_1997_4_a2/
LA  - ru
ID  - PA_1997_4_a2
ER  - 
%0 Journal Article
%A J. Godula
%A V. V. Starkov
%T Linearly invariant families of harmonic locally quasiconformal mappings
%J Problemy analiza
%D 1997
%P 50-61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_1997_4_a2/
%G ru
%F PA_1997_4_a2
J. Godula; V. V. Starkov. Linearly invariant families of harmonic locally quasiconformal mappings. Problemy analiza, no. 4 (1997), pp. 50-61. http://geodesic.mathdoc.fr/item/PA_1997_4_a2/