The maximum of some functional for holomorphic and univalent functions with real coefficients
Problemy analiza, no. 3 (1996), pp. 62-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the maximum of the functional $a^{k}_{2}a^{m}_{3}(a_{3}-\alpha a^{2}_{2})$ in the class $S_{R}$ of functions $f(z)=z+\sum_{n=2}^{\infty}a_{n}z^{n}, a_{n}=\overline{a_{n}}$, holomorphic and univalent in the unit disc is obtained for $\alpha$ real and $k, m$ positive integers.
@article{PA_1996_3_a6,
     author = {W. Majchrzak and A. Szwankowski},
     title = {The maximum of some functional for holomorphic and univalent functions with real coefficients},
     journal = {Problemy analiza},
     pages = {62--71},
     publisher = {mathdoc},
     number = {3},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_1996_3_a6/}
}
TY  - JOUR
AU  - W. Majchrzak
AU  - A. Szwankowski
TI  - The maximum of some functional for holomorphic and univalent functions with real coefficients
JO  - Problemy analiza
PY  - 1996
SP  - 62
EP  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_1996_3_a6/
LA  - en
ID  - PA_1996_3_a6
ER  - 
%0 Journal Article
%A W. Majchrzak
%A A. Szwankowski
%T The maximum of some functional for holomorphic and univalent functions with real coefficients
%J Problemy analiza
%D 1996
%P 62-71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_1996_3_a6/
%G en
%F PA_1996_3_a6
W. Majchrzak; A. Szwankowski. The maximum of some functional for holomorphic and univalent functions with real coefficients. Problemy analiza, no. 3 (1996), pp. 62-71. http://geodesic.mathdoc.fr/item/PA_1996_3_a6/