The maximum of some functional for holomorphic and univalent functions with real coefficients
Problemy analiza, no. 3 (1996), pp. 62-71
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper the maximum of the functional $a^{k}_{2}a^{m}_{3}(a_{3}-\alpha a^{2}_{2})$ in the class $S_{R}$ of functions $f(z)=z+\sum_{n=2}^{\infty}a_{n}z^{n}, a_{n}=\overline{a_{n}}$, holomorphic and univalent in the unit disc is obtained for $\alpha$ real and $k, m$ positive integers.
@article{PA_1996_3_a6,
author = {W. Majchrzak and A. Szwankowski},
title = {The maximum of some functional for holomorphic and univalent functions with real coefficients},
journal = {Problemy analiza},
pages = {62--71},
year = {1996},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PA_1996_3_a6/}
}
W. Majchrzak; A. Szwankowski. The maximum of some functional for holomorphic and univalent functions with real coefficients. Problemy analiza, no. 3 (1996), pp. 62-71. http://geodesic.mathdoc.fr/item/PA_1996_3_a6/