On univalence of integrals of $(F')^{\lambda}$ and Bloch functions
Problemy analiza, no. 3 (1996), pp. 28-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we estimate a constant $C_{\alpha}$, connected with the Bloch class $\mathcal{B}$ and the universal linear invariant families $U_{\alpha}$. Moreover, we estimate the radius of the biggest disc such that for all its elements $\lambda$ the integral of $(h')^{\lambda}$ is univalent for all $h\in U_{\alpha}$.
@article{PA_1996_3_a3,
     author = {J. Godula and V. V. Starkov},
     title = {On univalence of integrals of $(F')^{\lambda}$ and {Bloch} functions},
     journal = {Problemy analiza},
     pages = {28--36},
     publisher = {mathdoc},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_1996_3_a3/}
}
TY  - JOUR
AU  - J. Godula
AU  - V. V. Starkov
TI  - On univalence of integrals of $(F')^{\lambda}$ and Bloch functions
JO  - Problemy analiza
PY  - 1996
SP  - 28
EP  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_1996_3_a3/
LA  - ru
ID  - PA_1996_3_a3
ER  - 
%0 Journal Article
%A J. Godula
%A V. V. Starkov
%T On univalence of integrals of $(F')^{\lambda}$ and Bloch functions
%J Problemy analiza
%D 1996
%P 28-36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_1996_3_a3/
%G ru
%F PA_1996_3_a3
J. Godula; V. V. Starkov. On univalence of integrals of $(F')^{\lambda}$ and Bloch functions. Problemy analiza, no. 3 (1996), pp. 28-36. http://geodesic.mathdoc.fr/item/PA_1996_3_a3/