On univalence of integrals of $(F')^{\lambda}$ and Bloch functions
Problemy analiza, no. 3 (1996), pp. 28-36
Cet article a éte moissonné depuis la source Math-Net.Ru
In this note we estimate a constant $C_{\alpha}$, connected with the Bloch class $\mathcal{B}$ and the universal linear invariant families $U_{\alpha}$. Moreover, we estimate the radius of the biggest disc such that for all its elements $\lambda$ the integral of $(h')^{\lambda}$ is univalent for all $h\in U_{\alpha}$.
@article{PA_1996_3_a3,
author = {J. Godula and V. V. Starkov},
title = {On univalence of integrals of $(F')^{\lambda}$ and {Bloch} functions},
journal = {Problemy analiza},
pages = {28--36},
year = {1996},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PA_1996_3_a3/}
}
J. Godula; V. V. Starkov. On univalence of integrals of $(F')^{\lambda}$ and Bloch functions. Problemy analiza, no. 3 (1996), pp. 28-36. http://geodesic.mathdoc.fr/item/PA_1996_3_a3/