О классах Никольского — Бесова на компактных симметрических пространствах ранга 1
Problemy analiza, no. 3 (1996), pp. 118-137
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $M$ be a compact symmetric space of rank 1. We have defined the Nikolskii— Besov type function classes $B^{r}_{p,\theta}(M)$ and we have obtained a conctructive description of this classes in in terms of the best approximation by the spherical polynomials on $M$.
@article{PA_1996_3_a12,
author = {S. S. Platonov},
title = {{\CYRO} {\cyrk}{\cyrl}{\cyra}{\cyrs}{\cyrs}{\cyra}{\cyrh} {{\CYRN}{\cyri}{\cyrk}{\cyro}{\cyrl}{\cyrsftsn}{\cyrs}{\cyrk}{\cyro}{\cyrg}{\cyro}} {\textemdash} {{\CYRB}{\cyre}{\cyrs}{\cyro}{\cyrv}{\cyra}} {\cyrn}{\cyra} {\cyrk}{\cyro}{\cyrm}{\cyrp}{\cyra}{\cyrk}{\cyrt}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyri}{\cyrm}{\cyrm}{\cyre}{\cyrt}{\cyrr}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrh} {\cyrp}{\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyrr}{\cyra}{\cyrn}{\cyrs}{\cyrt}{\cyrv}{\cyra}{\cyrh} {\cyrr}{\cyra}{\cyrn}{\cyrg}{\cyra} 1},
journal = {Problemy analiza},
pages = {118--137},
year = {1996},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PA_1996_3_a12/}
}
S. S. Platonov. О классах Никольского — Бесова на компактных симметрических пространствах ранга 1. Problemy analiza, no. 3 (1996), pp. 118-137. http://geodesic.mathdoc.fr/item/PA_1996_3_a12/