On a lenght of the continued fraction's period
Problemy analiza, no. 1 (1993), pp. 85-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

В статье дана оценка количества чисел $d$ отрезка натурального ряда, для которых непрерывная дробь для $\sqrt{d}$ имеет больший период.
@article{PA_1993_1_a12,
     author = {B. M. Shirokov},
     title = {On a lenght of the continued fraction's period},
     journal = {Problemy analiza},
     pages = {85--90},
     publisher = {mathdoc},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_1993_1_a12/}
}
TY  - JOUR
AU  - B. M. Shirokov
TI  - On a lenght of the continued fraction's period
JO  - Problemy analiza
PY  - 1993
SP  - 85
EP  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_1993_1_a12/
LA  - en
ID  - PA_1993_1_a12
ER  - 
%0 Journal Article
%A B. M. Shirokov
%T On a lenght of the continued fraction's period
%J Problemy analiza
%D 1993
%P 85-90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_1993_1_a12/
%G en
%F PA_1993_1_a12
B. M. Shirokov. On a lenght of the continued fraction's period. Problemy analiza, no. 1 (1993), pp. 85-90. http://geodesic.mathdoc.fr/item/PA_1993_1_a12/