Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods.
Numerische Mathematik, Tome 61 (1992) no. 3, pp. 281-290
Voir la notice de l'article provenant de la source European Digital Mathematics Library
Mots-clés :
multistep methods, Hamiltonian systems, symplectic structure, conservation laws, one-leg methods
@article{NUMA_1992__61_3_133622,
author = {J.M. Sanz-Serna and T. Eirola},
title = {Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods.},
journal = {Numerische Mathematik},
pages = {281--290},
publisher = {mathdoc},
volume = {61},
number = {3},
year = {1992},
zbl = {0741.65056},
url = {http://geodesic.mathdoc.fr/item/NUMA_1992__61_3_133622/}
}
TY - JOUR AU - J.M. Sanz-Serna AU - T. Eirola TI - Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods. JO - Numerische Mathematik PY - 1992 SP - 281 EP - 290 VL - 61 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NUMA_1992__61_3_133622/ ID - NUMA_1992__61_3_133622 ER -
%0 Journal Article %A J.M. Sanz-Serna %A T. Eirola %T Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods. %J Numerische Mathematik %D 1992 %P 281-290 %V 61 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/NUMA_1992__61_3_133622/ %F NUMA_1992__61_3_133622
J.M. Sanz-Serna; T. Eirola. Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods.. Numerische Mathematik, Tome 61 (1992) no. 3, pp. 281-290. http://geodesic.mathdoc.fr/item/NUMA_1992__61_3_133622/