Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods.
Numerische Mathematik, Tome 61 (1992) no. 3, pp. 281-290.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : multistep methods, Hamiltonian systems, symplectic structure, conservation laws, one-leg methods
@article{NUMA_1992__61_3_133622,
     author = {J.M. Sanz-Serna and T. Eirola},
     title = {Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods.},
     journal = {Numerische Mathematik},
     pages = {281--290},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1992},
     zbl = {0741.65056},
     url = {http://geodesic.mathdoc.fr/item/NUMA_1992__61_3_133622/}
}
TY  - JOUR
AU  - J.M. Sanz-Serna
AU  - T. Eirola
TI  - Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods.
JO  - Numerische Mathematik
PY  - 1992
SP  - 281
EP  - 290
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NUMA_1992__61_3_133622/
ID  - NUMA_1992__61_3_133622
ER  - 
%0 Journal Article
%A J.M. Sanz-Serna
%A T. Eirola
%T Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods.
%J Numerische Mathematik
%D 1992
%P 281-290
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NUMA_1992__61_3_133622/
%F NUMA_1992__61_3_133622
J.M. Sanz-Serna; T. Eirola. Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods.. Numerische Mathematik, Tome 61 (1992) no. 3, pp. 281-290. http://geodesic.mathdoc.fr/item/NUMA_1992__61_3_133622/