Finite element approximation of a model reaction - diffusion problem with a non-Lipschitz nonlinearity.
Numerische Mathematik, Tome 59 (1991) no. 8, pp. 217-242.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : optimal error bounds, Galerkin method, successive overrelaxation, global convergence, reaction-diffusion equation, finite element approximation, nonlinear SOR algorithm
@article{NUMA_1991__59_8_133546,
     author = {John W. Barrett and R.M. Shanahan},
     title = {Finite element approximation of a model reaction - diffusion problem with a {non-Lipschitz} nonlinearity.},
     journal = {Numerische Mathematik},
     pages = {217--242},
     publisher = {mathdoc},
     volume = {59},
     number = {8},
     year = {1991},
     zbl = {0735.65078},
     url = {http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133546/}
}
TY  - JOUR
AU  - John W. Barrett
AU  - R.M. Shanahan
TI  - Finite element approximation of a model reaction - diffusion problem with a non-Lipschitz nonlinearity.
JO  - Numerische Mathematik
PY  - 1991
SP  - 217
EP  - 242
VL  - 59
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133546/
ID  - NUMA_1991__59_8_133546
ER  - 
%0 Journal Article
%A John W. Barrett
%A R.M. Shanahan
%T Finite element approximation of a model reaction - diffusion problem with a non-Lipschitz nonlinearity.
%J Numerische Mathematik
%D 1991
%P 217-242
%V 59
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133546/
%F NUMA_1991__59_8_133546
John W. Barrett; R.M. Shanahan. Finite element approximation of a model reaction - diffusion problem with a non-Lipschitz nonlinearity.. Numerische Mathematik, Tome 59 (1991) no. 8, pp. 217-242. http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133546/