Finite element approximation of a model reaction - diffusion problem with a non-Lipschitz nonlinearity.
Numerische Mathematik, Tome 59 (1991) no. 8, pp. 217-242
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
optimal error bounds, Galerkin method, successive overrelaxation, global convergence, reaction-diffusion equation, finite element approximation, nonlinear SOR algorithm
@article{NUMA_1991__59_8_133546,
author = {John W. Barrett and R.M. Shanahan},
title = {Finite element approximation of a model reaction - diffusion problem with a {non-Lipschitz} nonlinearity.},
journal = {Numerische Mathematik},
pages = {217--242},
year = {1991},
volume = {59},
number = {8},
zbl = {0735.65078},
url = {http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133546/}
}
TY - JOUR AU - John W. Barrett AU - R.M. Shanahan TI - Finite element approximation of a model reaction - diffusion problem with a non-Lipschitz nonlinearity. JO - Numerische Mathematik PY - 1991 SP - 217 EP - 242 VL - 59 IS - 8 UR - http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133546/ ID - NUMA_1991__59_8_133546 ER -
%0 Journal Article %A John W. Barrett %A R.M. Shanahan %T Finite element approximation of a model reaction - diffusion problem with a non-Lipschitz nonlinearity. %J Numerische Mathematik %D 1991 %P 217-242 %V 59 %N 8 %U http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133546/ %F NUMA_1991__59_8_133546
John W. Barrett; R.M. Shanahan. Finite element approximation of a model reaction - diffusion problem with a non-Lipschitz nonlinearity.. Numerische Mathematik, Tome 59 (1991) no. 8, pp. 217-242. http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133546/