A quasi-Newton method for solving fixed point problems in Hilbert spaces.
Numerische Mathematik, Tome 59 (1991) no. 8, pp. 159-178
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
superlinear convergence, Newton method, Krylov subspaces, fixed points, completely continuous operators, Hilbert spaces, degree of compactness, nonlinear integral equations, numerical examples
@article{NUMA_1991__59_8_133544,
author = {Pierpaolo Omari and Igor Moret},
title = {A {quasi-Newton} method for solving fixed point problems in {Hilbert} spaces.},
journal = {Numerische Mathematik},
pages = {159--178},
year = {1991},
volume = {59},
number = {8},
zbl = {0726.65064},
url = {http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133544/}
}
Pierpaolo Omari; Igor Moret. A quasi-Newton method for solving fixed point problems in Hilbert spaces.. Numerische Mathematik, Tome 59 (1991) no. 8, pp. 159-178. http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133544/