A quasi-Newton method for solving fixed point problems in Hilbert spaces.
Numerische Mathematik, Tome 59 (1991) no. 8, pp. 159-178.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : superlinear convergence, Newton method, Krylov subspaces, fixed points, completely continuous operators, Hilbert spaces, degree of compactness, nonlinear integral equations, numerical examples
@article{NUMA_1991__59_8_133544,
     author = {Pierpaolo Omari and Igor Moret},
     title = {A {quasi-Newton} method for solving fixed point problems in {Hilbert} spaces.},
     journal = {Numerische Mathematik},
     pages = {159--178},
     publisher = {mathdoc},
     volume = {59},
     number = {8},
     year = {1991},
     zbl = {0726.65064},
     url = {http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133544/}
}
TY  - JOUR
AU  - Pierpaolo Omari
AU  - Igor Moret
TI  - A quasi-Newton method for solving fixed point problems in Hilbert spaces.
JO  - Numerische Mathematik
PY  - 1991
SP  - 159
EP  - 178
VL  - 59
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133544/
ID  - NUMA_1991__59_8_133544
ER  - 
%0 Journal Article
%A Pierpaolo Omari
%A Igor Moret
%T A quasi-Newton method for solving fixed point problems in Hilbert spaces.
%J Numerische Mathematik
%D 1991
%P 159-178
%V 59
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133544/
%F NUMA_1991__59_8_133544
Pierpaolo Omari; Igor Moret. A quasi-Newton method for solving fixed point problems in Hilbert spaces.. Numerische Mathematik, Tome 59 (1991) no. 8, pp. 159-178. http://geodesic.mathdoc.fr/item/NUMA_1991__59_8_133544/