What do Multistep Methods Approximate?
Numerische Mathematik, Tome 53 (1988) no. 1-2, pp. 559-570.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : consistent strictly stable multistep multiderivative method, first-order differential equations, flow of the vector field, invariant circles, hyperbolic periodic trajectories
@article{NUMA_1988__53_1-2_133291,
     author = {Olavi Nevanlinna and Timo Eirola},
     title = {What do {Multistep} {Methods} {Approximate?}},
     journal = {Numerische Mathematik},
     pages = {559--570},
     publisher = {mathdoc},
     volume = {53},
     number = {1-2},
     year = {1988},
     zbl = {0657.65096},
     url = {http://geodesic.mathdoc.fr/item/NUMA_1988__53_1-2_133291/}
}
TY  - JOUR
AU  - Olavi Nevanlinna
AU  - Timo Eirola
TI  - What do Multistep Methods Approximate?
JO  - Numerische Mathematik
PY  - 1988
SP  - 559
EP  - 570
VL  - 53
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NUMA_1988__53_1-2_133291/
ID  - NUMA_1988__53_1-2_133291
ER  - 
%0 Journal Article
%A Olavi Nevanlinna
%A Timo Eirola
%T What do Multistep Methods Approximate?
%J Numerische Mathematik
%D 1988
%P 559-570
%V 53
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NUMA_1988__53_1-2_133291/
%F NUMA_1988__53_1-2_133291
Olavi Nevanlinna; Timo Eirola. What do Multistep Methods Approximate?. Numerische Mathematik, Tome 53 (1988) no. 1-2, pp. 559-570. http://geodesic.mathdoc.fr/item/NUMA_1988__53_1-2_133291/