Numerical Solution of the Obstacle Problem by the Penalty Method. Part II. Time-Dependent Problem.
Numerische Mathematik, Tome 49 (1986), pp. 255-268.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : obstacle problem, variational methods, penalty method, parabolic problems, quasi-optimal error estimates
@article{NUMA_1986__49_133111,
     author = {Reinhard Scholz},
     title = {Numerical {Solution} of the {Obstacle} {Problem} by the {Penalty} {Method.} {Part} {II.} {Time-Dependent} {Problem.}},
     journal = {Numerische Mathematik},
     pages = {255--268},
     publisher = {mathdoc},
     volume = {49},
     year = {1986},
     zbl = {0592.65039},
     url = {http://geodesic.mathdoc.fr/item/NUMA_1986__49_133111/}
}
TY  - JOUR
AU  - Reinhard Scholz
TI  - Numerical Solution of the Obstacle Problem by the Penalty Method. Part II. Time-Dependent Problem.
JO  - Numerische Mathematik
PY  - 1986
SP  - 255
EP  - 268
VL  - 49
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NUMA_1986__49_133111/
ID  - NUMA_1986__49_133111
ER  - 
%0 Journal Article
%A Reinhard Scholz
%T Numerical Solution of the Obstacle Problem by the Penalty Method. Part II. Time-Dependent Problem.
%J Numerische Mathematik
%D 1986
%P 255-268
%V 49
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NUMA_1986__49_133111/
%F NUMA_1986__49_133111
Reinhard Scholz. Numerical Solution of the Obstacle Problem by the Penalty Method. Part II. Time-Dependent Problem.. Numerische Mathematik, Tome 49 (1986), pp. 255-268. http://geodesic.mathdoc.fr/item/NUMA_1986__49_133111/