How to Get around a Simple Quadratic Fold.
Numerische Mathematik, Tome 48 (1986), pp. 417-428.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : simple critical point, simple fold, bifurcation critical value, error estimate. quadratic fold
@article{NUMA_1986__48_133078,
     author = {F. Brezzi and M. Cornalba and A. Di Carlo},
     title = {How to {Get} around a {Simple} {Quadratic} {Fold.}},
     journal = {Numerische Mathematik},
     pages = {417--428},
     publisher = {mathdoc},
     volume = {48},
     year = {1986},
     zbl = {0623.65059},
     url = {http://geodesic.mathdoc.fr/item/NUMA_1986__48_133078/}
}
TY  - JOUR
AU  - F. Brezzi
AU  - M. Cornalba
AU  - A. Di Carlo
TI  - How to Get around a Simple Quadratic Fold.
JO  - Numerische Mathematik
PY  - 1986
SP  - 417
EP  - 428
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NUMA_1986__48_133078/
ID  - NUMA_1986__48_133078
ER  - 
%0 Journal Article
%A F. Brezzi
%A M. Cornalba
%A A. Di Carlo
%T How to Get around a Simple Quadratic Fold.
%J Numerische Mathematik
%D 1986
%P 417-428
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NUMA_1986__48_133078/
%F NUMA_1986__48_133078
F. Brezzi; M. Cornalba; A. Di Carlo. How to Get around a Simple Quadratic Fold.. Numerische Mathematik, Tome 48 (1986), pp. 417-428. http://geodesic.mathdoc.fr/item/NUMA_1986__48_133078/