Multi-Step Methods are Essentially One-Step Methods.
Numerische Mathematik, Tome 48 (1986), pp. 85-90.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : equivalent methods, multistep method, one-step method, invariant manifold theorem
@article{NUMA_1986__48_133059,
     author = {Urs Kirchgraber},
     title = {Multi-Step {Methods} are {Essentially} {One-Step} {Methods.}},
     journal = {Numerische Mathematik},
     pages = {85--90},
     publisher = {mathdoc},
     volume = {48},
     year = {1986},
     zbl = {0629.65077},
     url = {http://geodesic.mathdoc.fr/item/NUMA_1986__48_133059/}
}
TY  - JOUR
AU  - Urs Kirchgraber
TI  - Multi-Step Methods are Essentially One-Step Methods.
JO  - Numerische Mathematik
PY  - 1986
SP  - 85
EP  - 90
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NUMA_1986__48_133059/
ID  - NUMA_1986__48_133059
ER  - 
%0 Journal Article
%A Urs Kirchgraber
%T Multi-Step Methods are Essentially One-Step Methods.
%J Numerische Mathematik
%D 1986
%P 85-90
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NUMA_1986__48_133059/
%F NUMA_1986__48_133059
Urs Kirchgraber. Multi-Step Methods are Essentially One-Step Methods.. Numerische Mathematik, Tome 48 (1986), pp. 85-90. http://geodesic.mathdoc.fr/item/NUMA_1986__48_133059/