A Method of Solving Nonlinear Variational Problems by Nonlinear Transformation of the Objective Functional. Part II.
Numerische Mathematik, Tome 46 (1985), pp. 599-610
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
iterative method, nonlinear variational problems, temperature control problem, minimal surface problem, finite element, global convergence, Bingham flow problem
@article{NUMA_1985__46_133016,
author = {Alexander Eydeland},
title = {A {Method} of {Solving} {Nonlinear} {Variational} {Problems} by {Nonlinear} {Transformation} of the {Objective} {Functional.} {Part} {II.}},
journal = {Numerische Mathematik},
pages = {599--610},
year = {1985},
volume = {46},
zbl = {0562.65045},
url = {http://geodesic.mathdoc.fr/item/NUMA_1985__46_133016/}
}
TY - JOUR AU - Alexander Eydeland TI - A Method of Solving Nonlinear Variational Problems by Nonlinear Transformation of the Objective Functional. Part II. JO - Numerische Mathematik PY - 1985 SP - 599 EP - 610 VL - 46 UR - http://geodesic.mathdoc.fr/item/NUMA_1985__46_133016/ ID - NUMA_1985__46_133016 ER -
Alexander Eydeland. A Method of Solving Nonlinear Variational Problems by Nonlinear Transformation of the Objective Functional. Part II.. Numerische Mathematik, Tome 46 (1985), pp. 599-610. http://geodesic.mathdoc.fr/item/NUMA_1985__46_133016/