The Numerically Stable Reconstruction of Jacobi Matrices from Spectral Data.
Numerische Mathematik, Tome 44 (1984), pp. 317-336.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : reconstruction, numerical stability, Jacobi matrices, inverse eigenvalue problem, Rutishauser-Kahan-Pal-Walker algorithm, Lanczos-algorithm
@article{NUMA_1984__44_132939,
     author = {William B. Gragg and William J. Harrod},
     title = {The {Numerically} {Stable} {Reconstruction} of {Jacobi} {Matrices} from {Spectral} {Data.}},
     journal = {Numerische Mathematik},
     pages = {317--336},
     publisher = {mathdoc},
     volume = {44},
     year = {1984},
     zbl = {0556.65027},
     url = {http://geodesic.mathdoc.fr/item/NUMA_1984__44_132939/}
}
TY  - JOUR
AU  - William B. Gragg
AU  - William J. Harrod
TI  - The Numerically Stable Reconstruction of Jacobi Matrices from Spectral Data.
JO  - Numerische Mathematik
PY  - 1984
SP  - 317
EP  - 336
VL  - 44
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NUMA_1984__44_132939/
ID  - NUMA_1984__44_132939
ER  - 
%0 Journal Article
%A William B. Gragg
%A William J. Harrod
%T The Numerically Stable Reconstruction of Jacobi Matrices from Spectral Data.
%J Numerische Mathematik
%D 1984
%P 317-336
%V 44
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NUMA_1984__44_132939/
%F NUMA_1984__44_132939
William B. Gragg; William J. Harrod. The Numerically Stable Reconstruction of Jacobi Matrices from Spectral Data.. Numerische Mathematik, Tome 44 (1984), pp. 317-336. http://geodesic.mathdoc.fr/item/NUMA_1984__44_132939/