A Method of Solving Nonlinear Variational Problems by Nonlinear Transformation of the Objective Functional. Part I.
Numerische Mathematik, Tome 43 (1984), pp. 59-82
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
iterative method, nonlinear variational problems, temperature control problem, minimal surface problem, finite element, global convergence
@article{NUMA_1984__43_132888,
author = {Alexander Eydeland},
title = {A {Method} of {Solving} {Nonlinear} {Variational} {Problems} by {Nonlinear} {Transformation} of the {Objective} {Functional.} {Part} {I.}},
journal = {Numerische Mathematik},
pages = {59--82},
year = {1984},
volume = {43},
zbl = {0506.65027},
url = {http://geodesic.mathdoc.fr/item/NUMA_1984__43_132888/}
}
TY - JOUR AU - Alexander Eydeland TI - A Method of Solving Nonlinear Variational Problems by Nonlinear Transformation of the Objective Functional. Part I. JO - Numerische Mathematik PY - 1984 SP - 59 EP - 82 VL - 43 UR - http://geodesic.mathdoc.fr/item/NUMA_1984__43_132888/ ID - NUMA_1984__43_132888 ER -
Alexander Eydeland. A Method of Solving Nonlinear Variational Problems by Nonlinear Transformation of the Objective Functional. Part I.. Numerische Mathematik, Tome 43 (1984), pp. 59-82. http://geodesic.mathdoc.fr/item/NUMA_1984__43_132888/