Approximation of Optimal Distributed Control Problems Governed by Variational Inequalities.
Numerische Mathematik, Tome 38 (1982), pp. 393-416.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : distributed control problem, elastic-plastic torsion problem, obstacle problem, Rayleigh-Ritz-Galerkin scheme, finite element method, subdifferential, duality
@article{NUMA_1982__38_132770,
     author = {V. Arnautu},
     title = {Approximation of {Optimal} {Distributed} {Control} {Problems} {Governed} by {Variational} {Inequalities.}},
     journal = {Numerische Mathematik},
     pages = {393--416},
     publisher = {mathdoc},
     volume = {38},
     year = {1982},
     zbl = {0464.49010},
     url = {http://geodesic.mathdoc.fr/item/NUMA_1982__38_132770/}
}
TY  - JOUR
AU  - V. Arnautu
TI  - Approximation of Optimal Distributed Control Problems Governed by Variational Inequalities.
JO  - Numerische Mathematik
PY  - 1982
SP  - 393
EP  - 416
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NUMA_1982__38_132770/
ID  - NUMA_1982__38_132770
ER  - 
%0 Journal Article
%A V. Arnautu
%T Approximation of Optimal Distributed Control Problems Governed by Variational Inequalities.
%J Numerische Mathematik
%D 1982
%P 393-416
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NUMA_1982__38_132770/
%F NUMA_1982__38_132770
V. Arnautu. Approximation of Optimal Distributed Control Problems Governed by Variational Inequalities.. Numerische Mathematik, Tome 38 (1982), pp. 393-416. http://geodesic.mathdoc.fr/item/NUMA_1982__38_132770/