A Stepsize Control for Continuation Methods and its Special Application to Multiple Shooting Techniques.
Numerische Mathematik, Tome 33 (1979), pp. 115-146.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : Newton-Kantorovich theorem, damped Newton method, homotopy problem, predictors, corrector, affine invariant convergence theorem, two-point boundary value problems, shooting
@article{NUMA_1979__33_132632,
     author = {P. Deuflhard},
     title = {A {Stepsize} {Control} for {Continuation} {Methods} and its {Special} {Application} to {Multiple} {Shooting} {Techniques.}},
     journal = {Numerische Mathematik},
     pages = {115--146},
     publisher = {mathdoc},
     volume = {33},
     year = {1979},
     zbl = {0428.65032},
     url = {http://geodesic.mathdoc.fr/item/NUMA_1979__33_132632/}
}
TY  - JOUR
AU  - P. Deuflhard
TI  - A Stepsize Control for Continuation Methods and its Special Application to Multiple Shooting Techniques.
JO  - Numerische Mathematik
PY  - 1979
SP  - 115
EP  - 146
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NUMA_1979__33_132632/
ID  - NUMA_1979__33_132632
ER  - 
%0 Journal Article
%A P. Deuflhard
%T A Stepsize Control for Continuation Methods and its Special Application to Multiple Shooting Techniques.
%J Numerische Mathematik
%D 1979
%P 115-146
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NUMA_1979__33_132632/
%F NUMA_1979__33_132632
P. Deuflhard. A Stepsize Control for Continuation Methods and its Special Application to Multiple Shooting Techniques.. Numerische Mathematik, Tome 33 (1979), pp. 115-146. http://geodesic.mathdoc.fr/item/NUMA_1979__33_132632/