An integral univalent operator
defined by generalized Al-Oboudi differential operator on the classes
$\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$
Novi Sad Journal of Mathematics, Tome 40 (2010) no. 1
Voir la notice de l'article provenant de la source Novi sad journal of mathematics website
@article{NSJOM_2010_40_1a_5,
author = {Serap Bulut},
title = {An integral univalent operator
defined by generalized {Al-Oboudi} differential operator on the classes
$\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$},
journal = {Novi Sad Journal of Mathematics},
pages = {43-53},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {2010},
url = {http://geodesic.mathdoc.fr/item/NSJOM_2010_40_1a_5/}
}
TY - JOUR
AU - Serap Bulut
TI - An integral univalent operator
defined by generalized Al-Oboudi differential operator on the classes
$\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$
JO - Novi Sad Journal of Mathematics
PY - 2010
SP - 43
EP - 53
VL - 40
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/NSJOM_2010_40_1a_5/
ID - NSJOM_2010_40_1a_5
ER -
%0 Journal Article
%A Serap Bulut
%T An integral univalent operator
defined by generalized Al-Oboudi differential operator on the classes
$\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$
%J Novi Sad Journal of Mathematics
%D 2010
%P 43-53
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NSJOM_2010_40_1a_5/
%F NSJOM_2010_40_1a_5
Serap Bulut. An integral univalent operator
defined by generalized Al-Oboudi differential operator on the classes
$\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$. Novi Sad Journal of Mathematics, Tome 40 (2010) no. 1. http://geodesic.mathdoc.fr/item/NSJOM_2010_40_1a_5/