An integral univalent operator defined by generalized Al-Oboudi differential operator on the classes $\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$
Novi Sad Journal of Mathematics, Tome 40 (2010) no. 1.

Voir la notice de l'article provenant de la source Novi sad journal of mathematics website

@article{NSJOM_2010_40_1a_5,
     author = {Serap Bulut},
     title = {An integral univalent operator
 defined by generalized {Al-Oboudi} differential operator on the classes
 $\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$},
     journal = {Novi Sad Journal of Mathematics},
     pages = {43-53},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/NSJOM_2010_40_1a_5/}
}
TY  - JOUR
AU  - Serap Bulut
TI  - An integral univalent operator
 defined by generalized Al-Oboudi differential operator on the classes
 $\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$
JO  - Novi Sad Journal of Mathematics
PY  - 2010
SP  - 43
EP  - 53
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NSJOM_2010_40_1a_5/
ID  - NSJOM_2010_40_1a_5
ER  - 
%0 Journal Article
%A Serap Bulut
%T An integral univalent operator
 defined by generalized Al-Oboudi differential operator on the classes
 $\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$
%J Novi Sad Journal of Mathematics
%D 2010
%P 43-53
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NSJOM_2010_40_1a_5/
%F NSJOM_2010_40_1a_5
Serap Bulut. An integral univalent operator
 defined by generalized Al-Oboudi differential operator on the classes
 $\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$. Novi Sad Journal of Mathematics, Tome 40 (2010) no. 1. http://geodesic.mathdoc.fr/item/NSJOM_2010_40_1a_5/