Voir la notice de l'article provenant de la source Novi sad journal of mathematics website
@article{NSJOM_2010_40_1a_5, author = {Serap Bulut}, title = {An integral univalent operator defined by generalized {Al-Oboudi} differential operator on the classes $\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$}, journal = {Novi Sad Journal of Mathematics}, pages = {43-53}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2010}, url = {http://geodesic.mathdoc.fr/item/NSJOM_2010_40_1a_5/} }
TY - JOUR AU - Serap Bulut TI - An integral univalent operator defined by generalized Al-Oboudi differential operator on the classes $\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$ JO - Novi Sad Journal of Mathematics PY - 2010 SP - 43 EP - 53 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NSJOM_2010_40_1a_5/ ID - NSJOM_2010_40_1a_5 ER -
%0 Journal Article %A Serap Bulut %T An integral univalent operator defined by generalized Al-Oboudi differential operator on the classes $\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$ %J Novi Sad Journal of Mathematics %D 2010 %P 43-53 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/NSJOM_2010_40_1a_5/ %F NSJOM_2010_40_1a_5
Serap Bulut. An integral univalent operator defined by generalized Al-Oboudi differential operator on the classes $\mathcal{T}_{j},$ $\mathcal{T}_{j,\mu }$ and $\mathcal{S}_{j}(p)$. Novi Sad Journal of Mathematics, Tome 40 (2010) no. 1. http://geodesic.mathdoc.fr/item/NSJOM_2010_40_1a_5/